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MODELACIÓN GEOMÉTRICA Y GEOMETRÍA
ALGEBRAICA

La modelación geométrica utiliza polinomios para construir modelos
por computadora de objetos en diseño y manufactura industrial.

La Geometría algebraica investiga las propiedades algebraicas y
geométricas de sistemas de polinomios.
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REPRESENTACIÓN MATEMÁTICA DE CURVAS Y
SUPERFICIES

EXPLÍCITA

y = 3x + 1, z = x2 − y2

IMPLÍCITA

xz − y2 = 0 ∩ x3 − z = 0

PARAMÉTRICA

x(t) = t , y(t) = t2, z(t) = t3
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MODELACIÓN GEOMÉTRICA DE CURVAS Y
SUPERFICIES

MALLAS GEOMÉTRICAS

Parches de Coons (Ford)
Superficies de Gordon (General Motors)

MÉTODOS DE PUNTOS DE CONTROL

Interpolación de Lagrange
Métodos de Bézier y B-splines (Boeing)

MÉTODOS AVANZADOS

Subdivisión (Pixar)
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CURVAS DE BÉZIER

POLINOMIOS DE BERNSTEIN
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DEFINICIÓN PARAMÉTRICA

ϕ(t) :=
n∑

i=0

Bn
i (t)bi , t ∈ [0,1]

donde b0,b1, . . . ,bn son puntos de control en algún espacio afín.
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CURVAS DE BÉZIER

ϕ(t) = (1− t)5b0 + 5t(1− t)4b1+10t2(1− t)3b2+

10t3(1− t)2b3 + 5t4(1− t)b4 + t5b5.

GEOMETRICAL ASPECTS OF CONTROL POINTS 3

in Section 4 when we investigate the effect of systematically varying the weights of a patch
while keeping the control points and blending functions constant.

The control points and weights affect the shape of the patch which is the image of the
map F (1.1). For example, the convex hull property asserts that the image F (∆) of the
patch lies in the convex hull of the control points. To see this, note that if we set

βa(x) :=
waβa(x)∑

a∈Awaβa(x)
,

then βa(x) ≥ 0 and 1 =
∑

a∈A βa(x). Then formula (1.1) becomes

F (x) =
∑
a∈A

βa(x)ba ,

so that F (x) is a convex combination of the control points and therefore lies in their convex
hull. In fact, if there is a point x ∈ ∆ at which no blending function vanishes, then any
point in the interior of the convex hull of the control points is the image F (x) of some
patch for some choice of weights. In this way, the convex hull property is the strongest
general statement that can be made about the location of a patch.

Another well-known manifestation of control points is the relation of a Bézier curve to
its control polygon. Fix a positive integer d and let A := { i

d
| i = 0, . . . , d} so that ∆ is

the unit interval. The blending functions of a Bézier curve are the Bernstein polynomials,

βi(x) (= β i
d
(x)) :=

(
d
i

)
xi(1− x)d−i .

Given control points b0,b1, . . . ,bd, the control polygon of any Bézier curve with these
control points is the union of the line segments b0,b1, b1,b2, . . . , bd−1,bd between con-
secutive control points. Figure 1 displays two quintic plane Bézier curves with their control
polygons (solid lines). The convex hulls of the control points are indicated by the dashed
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Figure 1. Quintic Bézier curves

lines. The first curve has no points of self intersection, while the second curve has one point
of self intersection. While this self intersection may be removed by varying the weights
attached to the control points, by Theorem 3.7 it is impossible to find weights so that a
curve with the first set of control points has a point of self intersection.
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PRECISIÓN LINEAL DE LAS CURVAS DE BÉZIER

PRECISIÓN LINEAL

n∑
i=0

Bn
i (t)

i
n

= t

1
3

[
0(1− t)3 + 3t(1− t)2 + 6t2(1− t) + 3t3

]
= t

A =
{

0, 1
n ,

2
n , . . . ,1

}
.

∆ = [0,1] es la envolvente convexa de A.
Los polinomios de Bernstein estan indexados por A y tienen
dominio ∆.
Precisión lineal significa que ϕ(t) es la identidad en ∆ cuando
bi = i

n .
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PARCHES DEFINIDOS POR PUNTOS DE CONTROL

Defina A ⊂ Rd (e.g. d = 2) como un conjunto finito de índices cuya
envolvente convexa se denota ∆.

β := {βa : ∆→ R≥0 | a ∈ A}, funciones base, tal que, 1 =
∑

a βa(x).

Dados puntos de control B = {ba | a ∈ A} ⊂ R` (e.g. ` = 3),
obtenemos la función

F : ∆ −→ R` x 7−→
∑

βa(x)ba

La imagen de F es un parche de forma ∆.
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PARCHES TÓRICOS (KRASAUSKAS)

Cualquier politopo ∆ cuyos vértices tienen coordenadas enteras es
descrito a través de desigualdades definidoras de facetas

∆ =
{

x ∈ Rd | hi(x) ≥ 0, i = 1, . . . , r
}
,

donde hi(x) es una forma lineal con coeficientes enteros.

Para cada a ∈ A := ∆ ∩ Zd , existe una función tórica de Bézier

βa(x) := h1(x)h1(a)h2(x)h2(a) · · · hr (x)hr (a).

Sea w = {wa | a ∈ A} ⊂ R>, las funciones base estan dadas por

waβa∑
a∈Awaβa

para cada a ∈ A.
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VARIEDADES TÓRICAS

El mapeo ϕ : ∆ −→ R` es la composición de un mapa inyectivo a un
espacio proyectivo seguido por una proyección lineal.

ϕ : ∆
β−−−−→ RPA≥

µ−−−−→ RP`

x −−−−→ [βa(x) | a ∈ A] [ya | a ∈ A] −−−−→ ∑
a∈A ya(1,ba)

Example: Cubic Bézier Curve

The map ϕ : ∆ → R" factors through a map to projective space and

a linear projection. We illustrate this for a cubic Bézier patch.

!
ϕ"

"
"

"
"

"
"

"
"

"
"#

β

$

RP3
≥

R2

Frank Sottile, Texas A&M University 3
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VARIEDADES TÓRICAS

Denote la imagen β(∆) en RPA≥ como X∆,w , esta es la parte positiva
de una variedad tórica.

Example: Cubic Bézier Curve

The map ϕ : ∆ → R" factors through a map to projective space and

a linear projection. We illustrate this for a cubic Bézier patch.
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Frank Sottile, Texas A&M University 3
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TRIÁNGULOS DE BÉZIER

Examples

Rectangular Lattices
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Example: Bézier triangles

Bézier triangles are toric surface patches.

Set A := {(i, j) ∈ N2 | i ≥ 0, j ≥ 0, n− i− j ≥ 0}, then

w(i,j)β(i,j) := n!
i!j!(n−i−j)!x

iyj(n− x− y)n−i−j.

These are essentially the Bernstein poly-
nomials, which have linear precision.

The corresponding toric variety is the
Veronese surface of degree n.

Choosing control points, get Bézier tri-
angle of degree n.

This picture is a cubic Bézier triangle.

Frank Sottile, Texas A&M University 6
ϕ(s, t) =

∑
kl

(n
kl

)
sk t l(n − s − t)n−k−l

nn bkl

La variedad tórica correspondiente es la superficie de Veronese de
grado n.
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RECTÁNGULOS DE BÉZIER
Examples

Rectangular Lattices
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Triangular Lattices
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La variedad tórica correspondiente es el producto de Segre de dos
curvas racionales normales de grados n y m.
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PARCHES MULTILATERALES

Contemporary Mathematics

Smoothness, Fairness and the need for better multi-sided patches

Jörg Peters

ABSTRACT. This paper surveys the key achievements and outstanding challenges of con-

structing smooth surfaces for geometric design. The focus here is on explicit methods in

parametric form. In particular, recent insights into the curvature magnitude and distribu-

tion of surfaces generated by existing algorithms, based on generalized subdivision and on

splines, are illustrated and corresponding research questions are formulated. These chal-

lenges motivate the search for alternative approaches to multi-sided patch constructions.

1. The need for multi-sided patches

If all smooth surfaces could be modeled by a checkerboard mesh such that every mesh

node is surrounded by four quadrilaterals, we would simply parametrize them by tensor-

product splines and the question, how to create everywhere smooth surfaces, would be

simple to answer from standard spline theory [dB87]:use bidgree to obtain th order

smoothness. However, many surfaces have arbitrary local connectivity and global topo-

logical genus and such surfaces, meshes must, already by the Euler count, either include

-valent vertices where , or -sided facets. Removal of the offending vertices or

facets leads to holes in the mesh. Typically, we can assume that these holes are isolated,

since there exist a number of refinement strategies of an input mesh that create only addi-

tional mesh nodes that are 4-valent (e.g. [CC78]). Since we can associate tensor-product

splines with all the 4-valent nodes nodes, we are left with the task of filling -sided holes

in an otherwise smooth, regularly parametrized surface.

Key words and phrases. Differential geometry, surfaces, continuity, fairness, -sided holes.

supported in part by NSF Grant #9457806-CCR..

FIGURE 1. Multi-sided patches are needed to fill these holes.

c 0000 (copyright holder)
1

Toric patches

Krasauskas defined toric patches X∆, which are a class of multi-sided

patches that generalize Bézier patches.

For these, A is the set of integer points in polytope ∆.

Basis functions are a natural generalization of the Bernstein polynomials.

Toric Variety (projected) Toric Patch

Frank Sottile, Texas A&M University 8
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PRECISIÓN LINEAL

MAPEO TAUTOLÓGICO

Dado un parche tórico (∆,w), fijemos ba = a para todal a ∈ A para
obtener la función

τ : ∆ −→ ∆, x 7−→
∑
a∈A

βa(x)a.

PRECISIÓN LINEAL

El parche tórico (∆,w) tiene precisión lineal si y sólo si τ es la función
identidad.

TEOREMA (G-SOTTILE)
Todo parche tórico tiene una única reparametrización con precisión
lineal, dada por el inverso del moment map µ : X∆,w → ∆.
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PRECISIÓN LINEAL RACIONAL

Dado un conjunto finito A ⊂ Zd y un sistema de pesos w ∈ RA>, el
polinomio de Laurent Pw ,A se define como

Pw ,A :=
∑
a∈A

waxa, where xa = xa1
1 xa2

2 · · · xad
d .

TEOREMA (G-SOTTILE)
El parche tórico (∆,w) tiene precisión lineal racional si y sólo si

x 7−→ 1
Pw ,A

(
x1

∂

∂x1
Pw ,A, x2

∂

∂x2
Pw ,A, . . . , xd

∂

∂xd
Pw ,A

)
es un isomorfismo biracional Cd −−→ Cd . En este caso, Pw ,A es una
transformación polar tórica de Cremona.
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PRECISIÓN LINEAL DE SUPERFICIES TÓRICAS

TEOREMA (GRAF VON BOTHMER-RANESTAD-SOTTILE)
Un polinomio P ∈ C[x , y ] define una transformación polar tórica de
Cremona si y sólo si es equivalente a una de las siguientes formas

(x + y + 1)n (⇐⇒ triángulo de Bézier )

(x + 1)m(y + 1)n (⇐⇒ rectángulo de Bézier )

(x + 1)m ((x + 1)d + y
)n

(⇐⇒ parche trapezoidal )

x2 + y2 + 1− 2(xy + x + y)

EQUIVALENTE

Acción de SL(n,Z) en los exponentes de los monomios, multiplicación
por monomios de Laurent, y multiplicación de variables por escalares.
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PARCHE TRAPEZOIDAL

Sean n,d ≥ 1 and m ≥ 0 números enteros, y fije

A = {(i , j) | 0 ≤ j ≤ n and 0 ≤ i ≤ m + dn − dj},
que son los puntos con coordenadas enteras en el trapezoide

Trapezoidal patch

Let n, d ≥ 1 and m ≥ 0 be integers, and set

A := {(i, j) : 0 ≤ j ≤ n and 0 ≤ i ≤ m + dn− dj} ,

which are the integer points inside the trapezoid below.

(m,n)

(0, 0) (m + dn, 0)

(0, n)

Choose weights wi,j :=
(
n
j

)(
m+dn−dj

i

)
. Then the toric Bézier functions are

βi,j(s, t) :=
(
n
j

)(
m+dn−dj

i

)
si(m + dn− s− dt)m+dn−dj−itj(n− t)n−j .

Frank Sottile, Texas A&M University 11

Fije pesos wij =
(n

j

)(m+dn−dj
i

)
. Las funciones tóricas de Bézier se

definen como

βij(s, t) =

(
n
j

)(
m + dn − dj

i

)
si(m + dn − dt − s)m+dn−dj−i t j(n − t)n−j .

LUIS GARCÍA-PUENTE (SHSU) GEOMETRÍA DE PARCHES TÓRICOS INSTITUTO DE MATEMÁTICAS 17 / 29



INYECTIVIDAD DE PARCHES TÓRICOS

GEOMETRICAL ASPECTS OF CONTROL POINTS 3

in Section 4 when we investigate the effect of systematically varying the weights of a patch
while keeping the control points and blending functions constant.

The control points and weights affect the shape of the patch which is the image of the
map F (1.1). For example, the convex hull property asserts that the image F (∆) of the
patch lies in the convex hull of the control points. To see this, note that if we set

βa(x) :=
waβa(x)∑

a∈Awaβa(x)
,

then βa(x) ≥ 0 and 1 =
∑

a∈A βa(x). Then formula (1.1) becomes

F (x) =
∑
a∈A

βa(x)ba ,

so that F (x) is a convex combination of the control points and therefore lies in their convex
hull. In fact, if there is a point x ∈ ∆ at which no blending function vanishes, then any
point in the interior of the convex hull of the control points is the image F (x) of some
patch for some choice of weights. In this way, the convex hull property is the strongest
general statement that can be made about the location of a patch.

Another well-known manifestation of control points is the relation of a Bézier curve to
its control polygon. Fix a positive integer d and let A := { i

d
| i = 0, . . . , d} so that ∆ is

the unit interval. The blending functions of a Bézier curve are the Bernstein polynomials,

βi(x) (= β i
d
(x)) :=

(
d
i

)
xi(1− x)d−i .

Given control points b0,b1, . . . ,bd, the control polygon of any Bézier curve with these
control points is the union of the line segments b0,b1, b1,b2, . . . , bd−1,bd between con-
secutive control points. Figure 1 displays two quintic plane Bézier curves with their control
polygons (solid lines). The convex hulls of the control points are indicated by the dashed

b5

b4

b3

b2

b1

b0

b5

b4

b3

b2

b1

b0

Figure 1. Quintic Bézier curves

lines. The first curve has no points of self intersection, while the second curve has one point
of self intersection. While this self intersection may be removed by varying the weights
attached to the control points, by Theorem 3.7 it is impossible to find weights so that a
curve with the first set of control points has a point of self intersection.
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ORIENTACIONES COMPATIBLES

Sean A and B = {ba | a ∈ A} conjuntos finitos de puntos en Rd .

Suponga que {a0, . . . ,ad} ⊂ A y {ba0 , . . . ,bad} ⊂ B son subconjuntos
independientes, entonces cada lista determina una orientación.

Los conjuntos A y B son compatibles si cada par de subconjuntos
definen la misma orientación o la orientación opuesta.

10 G. CRACIUN, L. GARCÍA-PUENTE, AND F. SOTTILE

For example, the first and second sets of labeled points below are compatible, but neither
is compatible with the third.

1

2

3

4
1

3

2

4
1

2

4

3

We give our generalization of Birch’s Theorem. Suppose that ∆ ⊂ Rd is the convex hull
of A and {βa : ∆ → R≥ | a ∈ A} are toric Bézier functions for A. For any w ∈ RA>, let
Fw : ∆ → Rd be the toric patch of shape (A, w) given by the control points B ⊂ Rd:

(3.4) Fw(x) :=

∑
a∈Awaβa(x)ba∑

a∈Awaβa(x)
.

Theorem 3.5. The map Fw is injective for all w ∈ RA> if and only if A and B are
compatible.

As any set A is compatible with itself, this implies Birch’s Theorem (Theorem 2.6).

Example 3.6. Let be the convex hull of {(0, 0), (1, 0), (0, 1)}. Set A := 3 ∩ Z2 and
let w ∈ RA> be the weights of a cubic Bézier patch (Example 1.5 with d = 3). We consider
choices B ⊂ R2 of control points that are compatible with A. For convenience, we will
require that ba = a when a is a vertex and that if a lies on an edge of 3 , then so does
ba. For these edge control points, compatibility imposes the restriction that they appear
along the edge in the same order as the corresponding exponents from A. The placement
of the center control point is however constrained. We show two compatible choices B.
The first is the situation of Birch’s Theorem, in which ba = a, and in the second we have
moved the edge control points. The region in which we are free to move the center point
is shaded in each.

Proof of Theorem 3.5. Let (t, x) be coordinates for Rd+1 and consider the map Gw : Rd+1
> →

Rd+1 defined by

Gw(t, x) =
∑
a∈A

txawa(1,ba) .

We claim that Fw is injective if and only if Gw is injective.

Since Fw is the composition (2.3) ∆
β−→ XA

w.−→ w.XA
πB−−→ Rd, with the first map an

isomorphism, Fw is injective if and only if the composition of the last two maps is injective.
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πB−−→ Rd, with the first map an
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For example, the first and second sets of labeled points below are compatible, but neither
is compatible with the third.

1

2

3

4
1

3

2

4
1

2

4

3

We give our generalization of Birch’s Theorem. Suppose that ∆ ⊂ Rd is the convex hull
of A and {βa : ∆ → R≥ | a ∈ A} are toric Bézier functions for A. For any w ∈ RA>, let
Fw : ∆ → Rd be the toric patch of shape (A, w) given by the control points B ⊂ Rd:

(3.4) Fw(x) :=

∑
a∈Awaβa(x)ba∑

a∈Awaβa(x)
.

Theorem 3.5. The map Fw is injective for all w ∈ RA> if and only if A and B are
compatible.

As any set A is compatible with itself, this implies Birch’s Theorem (Theorem 2.6).

Example 3.6. Let be the convex hull of {(0, 0), (1, 0), (0, 1)}. Set A := 3 ∩ Z2 and
let w ∈ RA> be the weights of a cubic Bézier patch (Example 1.5 with d = 3). We consider
choices B ⊂ R2 of control points that are compatible with A. For convenience, we will
require that ba = a when a is a vertex and that if a lies on an edge of 3 , then so does
ba. For these edge control points, compatibility imposes the restriction that they appear
along the edge in the same order as the corresponding exponents from A. The placement
of the center control point is however constrained. We show two compatible choices B.
The first is the situation of Birch’s Theorem, in which ba = a, and in the second we have
moved the edge control points. The region in which we are free to move the center point
is shaded in each.

Proof of Theorem 3.5. Let (t, x) be coordinates for Rd+1 and consider the map Gw : Rd+1
> →

Rd+1 defined by

Gw(t, x) =
∑
a∈A

txawa(1,ba) .

We claim that Fw is injective if and only if Gw is injective.

Since Fw is the composition (2.3) ∆
β−→ XA

w.−→ w.XA
πB−−→ Rd, with the first map an

isomorphism, Fw is injective if and only if the composition of the last two maps is injective.
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10 G. CRACIUN, L. GARCÍA-PUENTE, AND F. SOTTILE

For example, the first and second sets of labeled points below are compatible, but neither
is compatible with the third.

1

2

3

4
1

3

2

4
1

2

4

3

We give our generalization of Birch’s Theorem. Suppose that ∆ ⊂ Rd is the convex hull
of A and {βa : ∆ → R≥ | a ∈ A} are toric Bézier functions for A. For any w ∈ RA>, let
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INYECTIVIDAD DE PARCHES TÓRICOS

Para cada w ∈ RA>, sea ϕw : ∆→ Rd el parche tórico de forma (∆,w)
dado por los puntos de control B ⊂ Rd :

ϕw (x) :=

∑
a∈Awaβa(x) ba∑

a∈Awaβa(x)
.

TEOREMA (CRACIUN-G-SOTTILE)

El mapeo ϕw es inyectivo para cada w ∈ RA> si y sólo si A y B son
compatibles.

El caso ba = a para cada a ∈ A es conocido como el Teorema de
Birch, un resultado fundamental en estadística y en geometría tórica.
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INYECTIVIDAD DE CURVAS Y SUPERFICIES DE BÉZIER

TEOREMA (CRACIUN-G-SOTTILE)

Sean A ⊂ Rd , w ∈ RA>, y B ⊂ Rn los exponentes, pesos, y puntos de
control de un parche tórico. Dada una proyección π : Rn− → Rd tal
que A es compatible con π(B), entonces ϕw : ∆→ Rn es inyectiva.

12 G. CRACIUN, L. GARCÍA-PUENTE, AND F. SOTTILE

the same order as the exponents A = {0, 1, 2, 3, 4, 5}, which implies that the curve has no
self intersections.

π

!

b5

b4

b3

b2

b1

b0

π(bi)

4. Control polytopes and toric degenerations

The convex hull property asserts that the image, F (∆), of a toric Bézier patch of shape
(A, w) given by control points B = {ba | a ∈ A} ⊂ Rn and weights w ∈ RA> lies in the
convex hull of the control points. When F (∆) is a curve, the control points may be joined
sequentially to form the control polygon, which is a piecewise linear representation of the
curve. When F (∆) is however a surface patch, there are many ways to interpolate the
control points by triangles or other polygons to obtain a piecewise linear surface, called a
control polytope, that represents the patch. The shape of this control polytope affects the
shape of the patch. For example, when the control points have the form (a, λ(a)) for λ a
convex function, then the patch is convex [6, 5]. Also, Leroy [15] uses a particular control
polytope for the graph of a function to obtain certificates of positivity for polynomials.

Among all control polytopes for a given set of control points, we identify the class of
regular control polytopes, which come from regular triangulations of the exponents A.
These regular control polytopes are related to the shape of the patch in the following
precise manner: There is a choice of weights so that a toric Bézier patch is arbitrarily close
to a given control polytope if and only if that polytope is regular.

4.1. Bézier curves. It is instructive to begin with Bézier curves. A Bézier curve of degree
d in Rn with weights w is the composition (2.3),

[0, 1]
β−→ d+1 w.−−→ d+1 πB−−→ Rn ,

where β = (β0, . . . , βd) with βi(x) =
(

d
i

)
xi(1−x)d−i for x ∈ [0, 1]. Then the map β is given

by zi =
(

d
i

)
xi(1 − x)d−i, for i = 0, . . . , d. Here, (z0, . . . , zd) ∈ Rd+1

≥ with z0 + · · · + zd = 1

are the coordinates for
d+1

. The image β[0, 1] ⊂ d+1
is defined by the binomials

(4.1)
(

d
i

)(
d
j

)
zazb −

(
d
a

)(
d
b

)
zizj = 0 , for a + b = i + j .

(Indeed, suppose that (z1, . . . , zd) ∈ Rd+1
≥ satisfies (4.1). Setting x := z1/(dz0 + z1), then

we may solve these equations to obtain zi =
(

d
i

)
xi(1− x)d−i = βi(x).)

LUIS GARCÍA-PUENTE (SHSU) GEOMETRÍA DE PARCHES TÓRICOS INSTITUTO DE MATEMÁTICAS 21 / 29



POLÍGONOS DE CONTROL

Sea ϕ(t) la curva de Bézier dada por

ϕ(t) =
n∑

i=0

(
n
i

)
t i(1− t)n−iba, t ∈ [0,1],

con puntos de control b0,b1, . . . ,bn en R`. El polígono de control es la
unión de los segmentos b0,b1,b1,b2, . . . ,bn−1,bn.

GEOMETRICAL ASPECTS OF CONTROL POINTS 3

in Section 4 when we investigate the effect of systematically varying the weights of a patch
while keeping the control points and blending functions constant.

The control points and weights affect the shape of the patch which is the image of the
map F (1.1). For example, the convex hull property asserts that the image F (∆) of the
patch lies in the convex hull of the control points. To see this, note that if we set

βa(x) :=
waβa(x)∑

a∈Awaβa(x)
,

then βa(x) ≥ 0 and 1 =
∑

a∈A βa(x). Then formula (1.1) becomes

F (x) =
∑
a∈A

βa(x)ba ,

so that F (x) is a convex combination of the control points and therefore lies in their convex
hull. In fact, if there is a point x ∈ ∆ at which no blending function vanishes, then any
point in the interior of the convex hull of the control points is the image F (x) of some
patch for some choice of weights. In this way, the convex hull property is the strongest
general statement that can be made about the location of a patch.

Another well-known manifestation of control points is the relation of a Bézier curve to
its control polygon. Fix a positive integer d and let A := { i

d
| i = 0, . . . , d} so that ∆ is

the unit interval. The blending functions of a Bézier curve are the Bernstein polynomials,

βi(x) (= β i
d
(x)) :=

(
d
i

)
xi(1− x)d−i .

Given control points b0,b1, . . . ,bd, the control polygon of any Bézier curve with these
control points is the union of the line segments b0,b1, b1,b2, . . . , bd−1,bd between con-
secutive control points. Figure 1 displays two quintic plane Bézier curves with their control
polygons (solid lines). The convex hulls of the control points are indicated by the dashed

b5

b4

b3

b2

b1

b0

b5

b4

b3

b2

b1

b0

Figure 1. Quintic Bézier curves

lines. The first curve has no points of self intersection, while the second curve has one point
of self intersection. While this self intersection may be removed by varying the weights
attached to the control points, by Theorem 3.7 it is impossible to find weights so that a
curve with the first set of control points has a point of self intersection.
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DEFORMACIONES DE CURVAS DE BÉZIER

TEOREMA (CRACIUN-G-SOTTILE)

Dados puntos de control en R`, para cualquier ε > 0, existen pesos tal
que la curva de Bézier correspondiente se encuentra a distancia ε del
polígono de control.
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lines. The first curve has no points of self intersection, while the second curve has one point
of self intersection. While this self intersection may be removed by varying the weights
attached to the control points, by Theorem 3.7 it is impossible to find weights so that a
curve with the first set of control points has a point of self intersection.
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We will also show that the control polygon may be approximated by a Bézier curve. We
state a simplified version of Theorem 4.4 from Section 4.

Theorem. Given control points in Rn for a Bézier curve and some number ε > 0, there
is a choice of weights so that the image F [0, 1] of the Bézier curve lies within a distance ε
of the control polygon.

For example, we display one of the quintic curves from Figure 1, but with weights on b0—
b5 of (1, 202, 203, 203, 202, 1) and (1, 3002, 3003, 3003, 3002, 1), respectively. In the second we
do not draw the control polygon, for that would obscure the curve.
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1.1. Toric Patches. Krasauskas [14] introduced toric patches as a generalization of the
classical Bézier and tensor product patches. These are based upon toric varieties from
algebraic geometry and may have shape any polytope with integer vertices. The articles [3,
18] provide an introduction to toric varieties for geometric modeling.

A polytope ∆ is defined by its facet inequalities

∆ = {x ∈ Rd | 0 ≤ hi(x) , i = 1, . . . , "} .

Here, ∆ has " facets (faces of maximal dimension) and for each i = 1, . . . , ", hi(x) = vi·x+ci

is the linear function defining the ith facet, where vi ∈ Zd is the (inward oriented) primitive
vector normal to the facet and ci ∈ Z.

For example, if our polytope is the triangle with vertices (0, 0), (d, 0), and (0, d),

(1.3) d := {(x, y) ∈ R2 | 0 ≤ x, y and 0 ≤ d− (x + y)} ,

then we have h1 = x, h2 = y, and h3 = d − x − y. Here, d is the unit triangle with
vertices (0, 0), (1, 0), and (0, 1) scaled by a factor of d.

Let A ⊂ ∆∩Zd be any subset of the integer points of ∆ which includes its vertices. For
every a ∈ A, Krasauskas defined the toric Bézier function

(1.4) βa(x) := h1(x)h1(a)h2(x)h2(a) · · ·h!(x)h!(a) ,

which is non-negative on ∆ and the collection of all βa has no common zeroes on ∆. These
are blending functions for the toric patch of shape A. If we choose weights w ∈ RA and
multiply the formula (1.4) by wa, we obtain blending functions for the toric patch of shape
(A, w).
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POLITOPOS DE CONTROL

Dado un conjunto de puntos de control en R3, existen muchas
maneras de interpolar usando triángulos para obtener una superficie
lineal por pedazos, llamada politopo de control.

16 G. CRACIUN, L. GARCÍA-PUENTE, AND F. SOTTILE

Definition 4.7. Let B = {ba | a ∈ A} ⊂ Rd be a collection of control points indexed by
a finite set of exponents A ⊂ Rd with d ≤ n. Given a regular triangulation T = {Ai | i =
1, . . . , m} of A we define the control polytope as follows. For each d-simplex Ai in T , the
corresponding points of B span a (possibly degenerate) simplex

conv{ba | a ∈ Ai} .

The union of these simplices in Rn forms the regular control polytope B(T ) that is induced
by the regular triangulation T of A. This is a simplicial complex in Rn with vertices in B
that has the same combinatorial type as the triangulation T of A.

If the coordinate points (ea | a ∈ A) of RA are our control points (these are the vertices

of
A
), then the regular control polytope is just the geometric realization |T | of the

simplicial complex T , which is a subcomplex of the simplex
A
. In general, B(T ) is the

image of this geometric realization |T | ⊂ A
under the projection πB.

Example 4.8. Let A := 3 ∩Z2, the exponents for a cubic Bézier triangle. Here are the
three control polytopes corresponding to the last three regular triangulations of (4.6), all
with the same control points.

The reason that we introduce regular control polytopes is that they may be approximated
by toric Bézier patches.

Theorem 4.9. Let A ⊂ Rd, w ∈ RA
>, and B ⊂ Rn be exponents, weights, and control

points for a toric Bézier patch. Suppose that T is a regular triangulation of A induced by
a lifting function λ : A → R. For each t > 0, let Ft : ∆ → Rn be the toric Bézier patch of
shape A with control points B and weights tλ(a)wa. Then, for any ε > 0 there exists a t0
such that if t > t0, the image Ft(∆) lies within ε of the control polytope B(T ).

We illustrate Theorem 4.9 for the toric patch of Example 4.8. On the left below is
the toric Bézier triangle with the weights of Example 1.5. The second and third patches
are deformations of it corresponding to the lifting function inducing the leftmost control
polytope of Example 4.8. The values of t are 1, 5, and 100, as we move from left to right.
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TRIANGULACIONES REGULARES

GEOMETRICAL ASPECTS OF CONTROL POINTS 15

The upper facets of Pλ are those facets whose outward pointing normal vector has positive
last coordinate. Any face of an upper facet is an upper face. We illustrate this below when
d = 1, where the displayed arrows are outward pointing normal vectors to upper facets.

(4.5) λ(A) Pλ

A
Projecting these upper facets to Rd yields a regular polyhedral subdivision of the convex

hull of A, which is the image of Pλ. For our purposes, we will need to assume that the
lifting function is generic in that all upper facets of Pλ are simplices. In this case, we obtain
a regular triangulation of A. This consists of a collection

{Ai | i = 1, . . . , m}
of subsets A, where each subset Ai consists of d+1 elements and spans a d-dimensional
simplex. We regard all subsets of the facetsAi as faces of the triangulation. These simplices
form a subdivision in that they cover the convex hull of A and any two with a non-empty
intersection meet along a common face.

The subdivision induced by the lifting function in (4.5) consists of three intervals result-
ing from removal of the middle point of A, which does not participate in the subdivision
as it is not lifted high enough.

A set may have many regular triangulations, and not every point needs to participate in
a given triangulation. Here are four regular triangulations of 3 ∩Z2, where we draw the
edges in the triangulation.

(4.6)

Not every triangulation is regular. We may assume that a lifting function λ for the
triangulation below takes a constant value at the three interior points. The clockwise
neighbor of any vertex must be lifted lower than that vertex. (Consider the figure they
form with the parallel edge of the interior triangle.) Since the edge of the big triangle is
lifted to a convex path, this is impossible, except in some M.C. Escher woodcuts.
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form a subdivision in that they cover the convex hull of A and any two with a non-empty
intersection meet along a common face.

The subdivision induced by the lifting function in (4.5) consists of three intervals result-
ing from removal of the middle point of A, which does not participate in the subdivision
as it is not lifted high enough.

A set may have many regular triangulations, and not every point needs to participate in
a given triangulation. Here are four regular triangulations of 3 ∩Z2, where we draw the
edges in the triangulation.

(4.6)

Not every triangulation is regular. We may assume that a lifting function λ for the
triangulation below takes a constant value at the three interior points. The clockwise
neighbor of any vertex must be lifted lower than that vertex. (Consider the figure they
form with the parallel edge of the interior triangle.) Since the edge of the big triangle is
lifted to a convex path, this is impossible, except in some M.C. Escher woodcuts.
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TRIANGULACIONES IRREGULARES

GEOMETRICAL ASPECTS OF CONTROL POINTS 15
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POLITOPOS REGULARES DE CONTROL

Fije puntos de control B = {ba | a ∈ A} ⊂ R` indexados por A ⊂ Rd

con d ≤ `. Dada una triangulación regular T = {A1, . . . ,Am} de A,
definimos al politopo regular de control B(T ) como la unión de los
simplejos conv{ba | a ∈ Ai}.
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Definition 4.7. Let B = {ba | a ∈ A} ⊂ Rd be a collection of control points indexed by
a finite set of exponents A ⊂ Rd with d ≤ n. Given a regular triangulation T = {Ai | i =
1, . . . , m} of A we define the control polytope as follows. For each d-simplex Ai in T , the
corresponding points of B span a (possibly degenerate) simplex

conv{ba | a ∈ Ai} .

The union of these simplices in Rn forms the regular control polytope B(T ) that is induced
by the regular triangulation T of A. This is a simplicial complex in Rn with vertices in B
that has the same combinatorial type as the triangulation T of A.

If the coordinate points (ea | a ∈ A) of RA are our control points (these are the vertices

of
A
), then the regular control polytope is just the geometric realization |T | of the

simplicial complex T , which is a subcomplex of the simplex
A
. In general, B(T ) is the

image of this geometric realization |T | ⊂ A
under the projection πB.

Example 4.8. Let A := 3 ∩Z2, the exponents for a cubic Bézier triangle. Here are the
three control polytopes corresponding to the last three regular triangulations of (4.6), all
with the same control points.

The reason that we introduce regular control polytopes is that they may be approximated
by toric Bézier patches.

Theorem 4.9. Let A ⊂ Rd, w ∈ RA
>, and B ⊂ Rn be exponents, weights, and control

points for a toric Bézier patch. Suppose that T is a regular triangulation of A induced by
a lifting function λ : A → R. For each t > 0, let Ft : ∆ → Rn be the toric Bézier patch of
shape A with control points B and weights tλ(a)wa. Then, for any ε > 0 there exists a t0
such that if t > t0, the image Ft(∆) lies within ε of the control polytope B(T ).

We illustrate Theorem 4.9 for the toric patch of Example 4.8. On the left below is
the toric Bézier triangle with the weights of Example 1.5. The second and third patches
are deformations of it corresponding to the lifting function inducing the leftmost control
polytope of Example 4.8. The values of t are 1, 5, and 100, as we move from left to right.
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DEFORMACIONES DE SUPERFICIES DE BÉZIER

TEOREMA (CRACIUN-G-SOTTILE)

Dados A ⊂ Rd , w ∈ RA>, B ⊂ R` y T una t. r. de A inducida por λ.
Para cada t > 0, sea ϕt el parche tórico

(
tλ(a)wa,A

)
, entonces dado

un ε > 0 ∃ t0 tal que si t > t0, la imagen ϕt (∆) está a distancia ε de
B(T ).
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by toric Bézier patches.

Theorem 4.9. Let A ⊂ Rd, w ∈ RA
>, and B ⊂ Rn be exponents, weights, and control
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