GEOMETRÍA DE PARCHES TÓRICOS

Luis David García-Puente en colaboración con Gheorghe Craciun (University of Wisconsin-Madison) y Frank Sottile (Texas A&M University)

Department of Mathematics and Statistics Sam Houston State University Statistical and Applied Mathematical Sciences Institute

Coloquio del Instituto de Matemáticas, UNAM

MODELACIÓN GEOMÉTRICA Y GEOMETRÍA Algebraica

La modelación geométrica utiliza polinomios para construir modelos por computadora de objetos en diseño y manufactura industrial.

La Geometría algebraica investiga las propiedades algebraicas y geométricas de sistemas de polinomios.

Representación Matemática de Curvas y Superficies

EXPLÍCITA $y = 3x + 1, \qquad z = x^2 - y^2$

 $\frac{\text{IMPLÍCITA}}{xz - y^2 = 0 \ \cap \ x^3 - z = 0}$

PARAMÉTRICA $x(t) = t, y(t) = t^2, z(t) = t^3$

MODELACIÓN GEOMÉTRICA DE CURVAS Y Superficies

MALLAS GEOMÉTRICAS

- Parches de Coons (Ford)
- Superficies de Gordon (General Motors)

MÉTODOS DE PUNTOS DE CONTROL

- Interpolación de Lagrange
- Métodos de Bézier y B-splines (Boeing)

MÉTODOS AVANZADOS

Subdivisión (Pixar)

CURVAS DE BÉZIER

POLINOMIOS DE BERNSTEIN $B_i^n(t) := {n \choose i} t^i (1-t)^{n-i}$

DEFINICIÓN PARAMÉTRICA

$$arphi(t) := \sum_{i=0}^n B_i^n(t) \mathbf{b}_i, \quad t \in [0,1]$$

donde $\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_n$ son puntos de control en algún espacio afín.

LUIS GARCÍA-PUENTE (SHSU)

GEOMETRÍA DE PARCHES TÓRICOS

CURVAS DE BÉZIER

$$\varphi(t) = (1-t)^5 \mathbf{b}_0 + 5t(1-t)^4 \mathbf{b}_1 + 10t^2(1-t)^3 \mathbf{b}_2 + 10t^3(1-t)^2 \mathbf{b}_3 + 5t^4(1-t)\mathbf{b}_4 + t^5 \mathbf{b}_5.$$

PRECISIÓN LINEAL DE LAS CURVAS DE BÉZIER

PRECISIÓN LINEAL

$$\sum_{i=0}^{n} B_i^n(t) \frac{i}{n} = t$$

$$\frac{1}{3}\left[0(1-t)^3 + 3t(1-t)^2 + 6t^2(1-t) + 3t^3\right] = t$$

•
$$\mathcal{A} = \{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\}.$$

- $\Delta = [0, 1]$ es la envolvente convexa de A.
- Los polinomios de Bernstein estan indexados por A y tienen dominio Δ.
- Precisión lineal significa que $\varphi(t)$ es la identidad en Δ cuando $\mathbf{b}_i = \frac{i}{n}$.

PARCHES DEFINIDOS POR PUNTOS DE CONTROL

Defina $\mathcal{A} \subset \mathbb{R}^d$ (e.g. d = 2) como un conjunto finito de índices cuya envolvente convexa se denota Δ .

 $\beta := \{\beta_{\mathbf{a}} : \Delta \to \mathbb{R}_{\geq 0} \mid \mathbf{a} \in \mathcal{A}\}, \text{ funciones base, tal que, } 1 = \sum_{\mathbf{a}} \beta_{\mathbf{a}}(x).$

Dados puntos de control $\mathcal{B} = \{ \mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A} \} \subset \mathbb{R}^{\ell}$ (e.g. $\ell = 3$), obtenemos la función

$$F: \Delta \longrightarrow \mathbb{R}^{\ell} \qquad x \longmapsto \sum eta_{\mathbf{a}}(x) \mathbf{b}_{\mathbf{a}}$$

La imagen de *F* es un parche de forma Δ .

PARCHES TÓRICOS (KRASAUSKAS)

Cualquier politopo Δ cuyos vértices tienen coordenadas enteras es descrito a través de desigualdades definidoras de facetas

$$\Delta = \left\{ x \in \mathbb{R}^d \mid h_i(x) \ge 0, \ i = 1, \dots, r \right\},\$$

donde $h_i(x)$ es una forma lineal con coeficientes enteros.

Para cada $\mathbf{a} \in \mathcal{A} := \Delta \cap \mathbb{Z}^d$, existe una función tórica de Bézier

$$\beta_{\mathbf{a}}(x) := h_1(x)^{h_1(\mathbf{a})} h_2(x)^{h_2(\mathbf{a})} \cdots h_r(x)^{h_r(\mathbf{a})}$$

Sea $w = \{w_a \mid a \in A\} \subset \mathbb{R}_>$, las funciones base estan dadas por

$$\frac{w_{\mathbf{a}}\beta_{\mathbf{a}}}{\sum_{\mathbf{a}\in\mathcal{A}}w_{\mathbf{a}}\beta_{\mathbf{a}}} \quad \text{para cada } \mathbf{a}\in\mathcal{A}.$$

VARIEDADES TÓRICAS

El mapeo $\varphi : \Delta \longrightarrow \mathbb{R}^{\ell}$ es la composición de un mapa inyectivo a un espacio proyectivo seguido por una proyección lineal.

LUIS GARCÍA-PUENTE (SHSU)

GEOMETRÍA DE PARCHES TÓRICOS

INSTITUTO DE MATEMÁTICAS 10 / 29

VARIEDADES TÓRICAS

Denote la imagen $\beta(\Delta)$ en $\mathbb{RP}^{\mathcal{A}}_{\geq}$ como $X_{\Delta,w}$, esta es la parte positiva de una variedad tórica.

TRIÁNGULOS DE BÉZIER

$$\varphi(\boldsymbol{s},t) = \sum_{kl} \frac{\binom{n}{kl} \boldsymbol{s}^{k} t^{l} (n-\boldsymbol{s}-t)^{n-k-l}}{n^{n}} \mathbf{b}_{kl}$$

La variedad tórica correspondiente es la superficie de Veronese de grado *n*.

LUIS GARCÍA-PUENTE (SHSU)

GEOMETRÍA DE PARCHES TÓRICOS

11/29

RECTÁNGULOS DE BÉZIER

$$\varphi(\boldsymbol{s},t) = \sum_{kl} \frac{\binom{m}{k}\binom{n}{l} \boldsymbol{s}^{k} (m-\boldsymbol{s})^{m-k} t^{l} (n-t)^{n-l}}{m^{m} n^{n}} \mathbf{b}_{kl}$$

La variedad tórica correspondiente es el producto de Segre de dos curvas racionales normales de grados *n* y *m*.

LUIS GARCÍA-PUENTE (SHSU)

GEOMETRÍA DE PARCHES TÓRICOS

PARCHES MULTILATERALES

\$H

PRECISIÓN LINEAL

MAPEO TAUTOLÓGICO

Dado un parche tórico (Δ , *w*), fijemos **b**_a = **a** para todal **a** $\in A$ para obtener la función

$$au: \Delta \longrightarrow \Delta, \qquad x \longmapsto \sum_{\mathbf{a} \in \mathcal{A}} eta_{\mathbf{a}}(x) \mathbf{a}.$$

PRECISIÓN LINEAL

El parche tórico (Δ , *w*) tiene precisión lineal si y sólo si τ es la función identidad.

TEOREMA (G-SOTTILE)

Todo parche tórico tiene una única reparametrización con precisión lineal, dada por el inverso del moment map $\mu : X_{\Delta,w} \to \Delta$.

LUIS GARCÍA-PUENTE (SHSU)

GEOMETRÍA DE PARCHES TÓRICOS

PRECISIÓN LINEAL RACIONAL

Dado un conjunto finito $\mathcal{A} \subset \mathbb{Z}^d$ y un sistema de pesos $w \in \mathbb{R}^{\mathcal{A}}_{>}$, el polinomio de Laurent $P_{w,\mathcal{A}}$ se define como

$$P_{w,\mathcal{A}} := \sum_{\mathbf{a} \in \mathcal{A}} w_{\mathbf{a}} x^{\mathbf{a}}, \quad \text{where } x^{\mathbf{a}} = x_1^{\mathbf{a}_1} x_2^{\mathbf{a}_2} \cdots x_d^{\mathbf{a}_d}.$$

TEOREMA (G-SOTTILE)

El parche tórico (Δ, w) tiene precisión lineal racional si y sólo si

$$x\longmapsto \frac{1}{P_{w,\mathcal{A}}}\left(x_1\frac{\partial}{\partial x_1}P_{w,\mathcal{A}}, x_2\frac{\partial}{\partial x_2}P_{w,\mathcal{A}}, \dots, x_d\frac{\partial}{\partial x_d}P_{w,\mathcal{A}}\right)$$

es un isomorfismo biracional $\mathbb{C}^d - - \rightarrow \mathbb{C}^d$. En este caso, $P_{w,A}$ es una transformación polar tórica de Cremona.

PRECISIÓN LINEAL DE SUPERFICIES TÓRICAS

TEOREMA (GRAF VON BOTHMER-RANESTAD-SOTTILE)

Un polinomio $P \in \mathbb{C}[x, y]$ define una transformación polar tórica de Cremona si y sólo si es **equivalente** a una de las siguientes formas

•
$$(x+y+1)^n$$
 (\iff triángulo de Bézier)

(
$$x + 1$$
)^m($y + 1$)ⁿ (\iff rectángulo de Bézier)

 $(x+1)^m ((x+1)^d + y)^n \quad (\iff parche trapezoidal)$ $x^2 + y^2 + 1 - 2(xy + x + y)$

EQUIVALENTE

Acción de $SL(n, \mathbb{Z})$ en los exponentes de los monomios, multiplicación por monomios de Laurent, y multiplicación de variables por escalares.

PRECISIÓN LINEAL DE SUPERFICIES TÓRICAS

TEOREMA (GRAF VON BOTHMER-RANESTAD-SOTTILE)

Un polinomio $P \in \mathbb{C}[x, y]$ define una transformación polar tórica de Cremona si y sólo si es **equivalente** a una de las siguientes formas

•
$$(x + y + 1)^n$$
 (\iff triángulo de Bézier)

•
$$(x+1)^m(y+1)^n$$
 (\iff rectángulo de Bézier)

 $(x+1)^m ((x+1)^d + y)^n \quad (\iff \text{ parche trapezoidal })$ $x^2 + y^2 + 1 - 2(xy + x + y)$

EQUIVALENTE

Acción de $SL(n, \mathbb{Z})$ en los exponentes de los monomios, multiplicación por monomios de Laurent, y multiplicación de variables por escalares.

PARCHE TRAPEZOIDAL

Sean $n, d \ge 1$ and $m \ge 0$ números enteros, y fije

 $\mathcal{A} = \{(i,j) \mid 0 \le j \le n \text{ and } 0 \le i \le m + dn - dj\},\$

que son los puntos con coordenadas enteras en el trapezoide

Fije pesos $w_{ij} = {n \choose j} {m+dn-dj \choose i}$. Las funciones tóricas de Bézier se definen como

$$\beta_{ij}(s,t) = \binom{n}{j} \binom{m+dn-dj}{i} s^{i}(m+dn-dt-s)^{m+dn-dj-i} t^{j}(n-t)^{n-j}$$

INYECTIVIDAD DE PARCHES TÓRICOS

b₄ b₀

 \mathbf{b}_5

ŞH

LUIS GARCÍA-PUENTE (SHSU)

GEOMETRÍA DE PARCHES TÓRICOS

INSTITUTO DE MATEMÁTICAS 18 / 29

Sean \mathcal{A} and $\mathcal{B} = \{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\}$ conjuntos finitos de puntos en \mathbb{R}^{d} .

Suponga que $\{\mathbf{a}_0, \dots, \mathbf{a}_d\} \subset \mathcal{A}$ y $\{\mathbf{b}_{\mathbf{a}_0}, \dots, \mathbf{b}_{\mathbf{a}_d}\} \subset \mathcal{B}$ son subconjuntos independientes, entonces cada lista determina una orientación.

Los conjuntos \mathcal{A} y \mathcal{B} son compatibles si cada par de subconjuntos definen la misma orientación o la orientación opuesta.

Sean \mathcal{A} and $\mathcal{B} = \{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\}$ conjuntos finitos de puntos en \mathbb{R}^{d} .

Suponga que $\{\mathbf{a}_0, \dots, \mathbf{a}_d\} \subset \mathcal{A}$ y $\{\mathbf{b}_{\mathbf{a}_0}, \dots, \mathbf{b}_{\mathbf{a}_d}\} \subset \mathcal{B}$ son subconjuntos independientes, entonces cada lista determina una orientación.

Los conjuntos \mathcal{A} y \mathcal{B} son compatibles si cada par de subconjuntos definen la misma orientación o la orientación opuesta.

LUIS GARCÍA-PUENTE (SHSU)

GEOMETRÍA DE PARCHES TÓRICOS

Sean \mathcal{A} and $\mathcal{B} = \{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\}$ conjuntos finitos de puntos en \mathbb{R}^{d} .

Suponga que $\{\mathbf{a}_0, \dots, \mathbf{a}_d\} \subset \mathcal{A}$ y $\{\mathbf{b}_{\mathbf{a}_0}, \dots, \mathbf{b}_{\mathbf{a}_d}\} \subset \mathcal{B}$ son subconjuntos independientes, entonces cada lista determina una orientación.

Los conjuntos \mathcal{A} y \mathcal{B} son compatibles si cada par de subconjuntos definen la misma orientación o la orientación opuesta.

LUIS GARCÍA-PUENTE (SHSU)

GEOMETRÍA DE PARCHES TÓRICOS

Sean \mathcal{A} and $\mathcal{B} = \{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\}$ conjuntos finitos de puntos en \mathbb{R}^{d} .

Suponga que $\{\mathbf{a}_0, \dots, \mathbf{a}_d\} \subset \mathcal{A}$ y $\{\mathbf{b}_{\mathbf{a}_0}, \dots, \mathbf{b}_{\mathbf{a}_d}\} \subset \mathcal{B}$ son subconjuntos independientes, entonces cada lista determina una orientación.

Los conjuntos \mathcal{A} y \mathcal{B} son compatibles si cada par de subconjuntos definen la misma orientación o la orientación opuesta.

Sean \mathcal{A} and $\mathcal{B} = \{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\}$ conjuntos finitos de puntos en \mathbb{R}^{d} .

Suponga que $\{a_0, \ldots, a_d\} \subset A$ y $\{b_{a_0}, \ldots, b_{a_d}\} \subset B$ son subconjuntos independientes, entonces cada lista determina una orientación.

Los conjuntos \mathcal{A} y \mathcal{B} son compatibles si cada par de subconjuntos definen la misma orientación o la orientación opuesta.

Sean \mathcal{A} and $\mathcal{B} = \{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\}$ conjuntos finitos de puntos en \mathbb{R}^{d} .

Suponga que $\{\mathbf{a}_0, \dots, \mathbf{a}_d\} \subset \mathcal{A}$ y $\{\mathbf{b}_{\mathbf{a}_0}, \dots, \mathbf{b}_{\mathbf{a}_d}\} \subset \mathcal{B}$ son subconjuntos independientes, entonces cada lista determina una orientación.

Los conjuntos \mathcal{A} y \mathcal{B} son compatibles si cada par de subconjuntos definen la misma orientación o la orientación opuesta.

Sean \mathcal{A} and $\mathcal{B} = \{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\}$ conjuntos finitos de puntos en \mathbb{R}^{d} .

Suponga que $\{\mathbf{a}_0, \dots, \mathbf{a}_d\} \subset \mathcal{A}$ y $\{\mathbf{b}_{\mathbf{a}_0}, \dots, \mathbf{b}_{\mathbf{a}_d}\} \subset \mathcal{B}$ son subconjuntos independientes, entonces cada lista determina una orientación.

Los conjuntos \mathcal{A} y \mathcal{B} son compatibles si cada par de subconjuntos definen la misma orientación o la orientación opuesta.

Sean \mathcal{A} and $\mathcal{B} = \{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\}$ conjuntos finitos de puntos en \mathbb{R}^{d} .

Suponga que $\{\mathbf{a}_0, \dots, \mathbf{a}_d\} \subset \mathcal{A}$ y $\{\mathbf{b}_{\mathbf{a}_0}, \dots, \mathbf{b}_{\mathbf{a}_d}\} \subset \mathcal{B}$ son subconjuntos independientes, entonces cada lista determina una orientación.

Los conjuntos \mathcal{A} y \mathcal{B} son compatibles si cada par de subconjuntos definen la misma orientación o la orientación opuesta.

INYECTIVIDAD DE PARCHES TÓRICOS

Para cada $w \in \mathbb{R}^{\mathcal{A}}_{>}$, sea $\varphi_w \colon \Delta \to \mathbb{R}^d$ el parche tórico de forma (Δ, w) dado por los puntos de control $\mathcal{B} \subset \mathbb{R}^d$:

$$\varphi_{W}(x) := \frac{\sum_{\mathbf{a} \in \mathcal{A}} W_{\mathbf{a}} \beta_{\mathbf{a}}(x) \mathbf{b}_{\mathbf{a}}}{\sum_{\mathbf{a} \in \mathcal{A}} W_{\mathbf{a}} \beta_{\mathbf{a}}(x)}$$

TEOREMA (CRACIUN-G-SOTTILE)

El mapeo φ_w es inyectivo para cada $w \in \mathbb{R}^{\mathcal{A}}_{>}$ si y sólo si \mathcal{A} y \mathcal{B} son compatibles.

El caso $\mathbf{b_a} = \mathbf{a}$ para cada $\mathbf{a} \in \mathcal{A}$ es conocido como el Teorema de Birch, un resultado fundamental en estadística y en geometría tórica.

INYECTIVIDAD DE CURVAS Y SUPERFICIES DE BÉZIER

TEOREMA (CRACIUN-G-SOTTILE)

Sean $A \subset \mathbb{R}^d$, $w \in \mathbb{R}^A$, $y \mathcal{B} \subset \mathbb{R}^n$ los exponentes, pesos, y puntos de control de un parche tórico. Dada una proyección $\pi \colon \mathbb{R}^n \to \mathbb{R}^d$ tal que \mathcal{A} es compatible con $\pi(\mathcal{B})$, entonces $\varphi_w \colon \Delta \to \mathbb{R}^n$ es inyectiva.

POLÍGONOS DE CONTROL

Sea $\varphi(t)$ la curva de Bézier dada por

$$\varphi(t) = \sum_{i=0}^{n} {n \choose i} t^i (1-t)^{n-i} \mathbf{b}_{\mathbf{a}}, \qquad t \in [0,1],$$

con puntos de control $\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_n$ en \mathbb{R}^{ℓ} . El polígono de control es la unión de los segmentos $\overline{\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_{n-1}, \mathbf{b}_n}$.

DEFORMACIONES DE CURVAS DE BÉZIER

TEOREMA (CRACIUN-G-SOTTILE)

Dados puntos de control en \mathbb{R}^{ℓ} , para cualquier $\epsilon > 0$, existen pesos tal que la curva de Bézier correspondiente se encuentra a distancia ϵ del polígono de control.

23/29

POLITOPOS DE CONTROL

Dado un conjunto de puntos de control en \mathbb{R}^3 , existen muchas maneras de interpolar usando triángulos para obtener una superficie lineal por pedazos, llamada politopo de control.

TRIANGULACIONES REGULARES

LUIS GARCÍA-PUENTE (SHSU)

GEOMETRÍA DE PARCHES TÓRICOS

TRIANGULACIONES IRREGULARES

\$H

LUIS GARCÍA-PUENTE (SHSU)

GEOMETRÍA DE PARCHES TÓRICOS

INSTITUTO DE MATEMÁTICAS 26 / 29

POLITOPOS REGULARES DE CONTROL

Fije puntos de control $\mathcal{B} = \{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\} \subset \mathbb{R}^{\ell}$ indexados por $\mathcal{A} \subset \mathbb{R}^{d}$ con $d \leq \ell$. Dada una triangulación regular $\mathcal{T} = \{\mathcal{A}_{1}, \dots, \mathcal{A}_{m}\}$ de \mathcal{A} , definimos al politopo regular de control $\mathcal{B}(\mathcal{T})$ como la unión de los simplejos conv $\{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}_{i}\}$.

DEFORMACIONES DE SUPERFICIES DE BÉZIER

TEOREMA (CRACIUN-G-SOTTILE)

Dados $\mathcal{A} \subset \mathbb{R}^d$, $w \in \mathbb{R}^A$, $\mathcal{B} \subset \mathbb{R}^\ell$ y \mathcal{T} una t. r. de \mathcal{A} inducida por λ . Para cada t > 0, sea φ_t el parche tórico $(t^{\lambda(a)}w_{\mathbf{a}}, \mathcal{A})$, entonces dado un $\epsilon > 0 \exists t_0$ tal que si $t > t_0$, la imagen $\varphi_t(\Delta)$ está a distancia ϵ de $\mathcal{B}(\mathcal{T})$.

BIBLIOGRAFÍA

- Rimvydas Krasauskas, Toric surface patches, Adv. Comput. Math. 17 (2002), no. 1-2, 89–133.
- Luis Garcia-Puente and Frank Sottile, Linear precision for parametric patches, to appear in Advances in Comp. Math.
- Hans-Christian Graf van Bothmer, Kristian Ranestad, and Frank Sottile, Linear precision for toric surface patches, 2008. ArXiv:0806.3230.
- Gheorghe Craciun, Luis Garcia-Puente and Frank Sottile, Some geometrical aspects of control points for toric patches, to appear in Lecture Notes in Computer Science.

