Geometría de Parches Tóricos

Luis David García-Puente en colaboración con

Gheorghe Craciun (University of Wisconsin-Madison) y Frank Sottile (Texas A\&M University)

Department of Mathematics and Statistics
Sam Houston State University
Statistical and Applied Mathematical Sciences Institute
Coloquio del Instituto de Matemáticas, UNAM

Modelación Geométrica y Geometría Algebraica

La modelación geométrica utiliza polinomios para construir modelos por computadora de objetos en diseño y manufactura industrial.

La Geometría algebraica investiga las propiedades algebraicas y geométricas de sistemas de polinomios.

Representación Matemática de Curvas y SUPERFICIES

Explícita

$y=3 x+1, \quad z=x^{2}-y^{2}$

Implícita
$x z-y^{2}=0 \cap x^{3}-z=0$
Paramétrica
$x(t)=t, y(t)=t^{2}, z(t)=t^{3}$

Modelación Geométrica de Curvas y Superficies

Mallas geométricas

- Parches de Coons (Ford)

■ Superficies de Gordon (General Motors)

Métodos de puntos de control
■ Interpolación de Lagrange
■ Métodos de Bézier y B-splines (Boeing)

Métodos avanzados
■ Subdivisión (Pixar)

Curvas de Bézier

Polinomios de Bernstein

$B_{i}^{n}(t):=\binom{n}{i} t^{i}(1-t)^{n-i}$

DEFINICIÓN PARAMÉTRICA

$$
\varphi(t):=\sum_{i=0}^{n} B_{i}^{n}(t) \mathbf{b}_{i}, \quad t \in[0,1]
$$

donde $\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ son puntos de control en algún espacio afín.

Curvas de Bézier

$$
\begin{aligned}
& \varphi(t)=(1-t)^{5} \mathbf{b}_{0}+5 t(1-t)^{4} \mathbf{b}_{1}+10 t^{2}(1-t)^{3} \mathbf{b}_{2}+ \\
& 10 t^{3}(1-t)^{2} \mathbf{b}_{3}+5 t^{4}(1-t) \mathbf{b}_{4}+t^{5} \mathbf{b}_{5} .
\end{aligned}
$$

Precisión lineal de las Curvas de Bézier

Precisión lineal

$$
\sum_{i=0}^{n} B_{i}^{n}(t) \frac{i}{n}=t
$$

$$
\frac{1}{3}\left[0(1-t)^{3}+3 t(1-t)^{2}+6 t^{2}(1-t)+3 t^{3}\right]=t
$$

- $\mathcal{A}=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, 1\right\}$.
- $\Delta=[0,1]$ es la envolvente convexa de \mathcal{A}.

■ Los polinomios de Bernstein estan indexados por \mathcal{A} y tienen dominio Δ.
■ Precisión lineal significa que $\varphi(t)$ es la identidad en Δ cuando $\mathbf{b}_{i}=\frac{i}{n}$.

PARCHES DEFINIDOS POR PUNTOS DE CONTROL

Defina $\mathcal{A} \subset \mathbb{R}^{d}$ (e.g. $d=2$) como un conjunto finito de índices cuya envolvente convexa se denota Δ.
$\beta:=\left\{\beta_{\mathbf{a}}: \Delta \rightarrow \mathbb{R}_{\geq 0} \mid \mathbf{a} \in \mathcal{A}\right\}$, funciones base, tal que, $1=\sum_{\mathbf{a}} \beta_{\mathbf{a}}(x)$.

Dados puntos de control $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\right\} \subset \mathbb{R}^{\ell}$ (e.g. $\ell=3$), obtenemos la función

$$
F: \Delta \longrightarrow \mathbb{R}^{\ell} \quad x \longmapsto \sum \beta_{\mathbf{a}}(x) \mathbf{b}_{\mathbf{a}}
$$

La imagen de F es un parche de forma Δ.

Parches Tóricos (Krasauskas)

Cualquier politopo Δ cuyos vértices tienen coordenadas enteras es descrito a través de desigualdades definidoras de facetas

$$
\Delta=\left\{x \in \mathbb{R}^{d} \mid h_{i}(x) \geq 0, i=1, \ldots, r\right\},
$$

donde $h_{i}(x)$ es una forma lineal con coeficientes enteros.
Para cada $\mathbf{a} \in \mathcal{A}:=\Delta \cap \mathbb{Z}^{d}$, existe una función tórica de Bézier

$$
\beta_{\mathbf{a}}(x):=h_{1}(x)^{h_{1}(\mathbf{a})} h_{2}(x)^{h_{2}(\mathbf{a})} \ldots h_{r}(x)^{h_{r}(\mathbf{a})} .
$$

Sea $w=\left\{w_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\right\} \subset \mathbb{R}_{>}$, las funciones base estan dadas por

$$
\frac{w_{\mathbf{a}} \beta_{\mathbf{a}}}{\sum_{\mathbf{a} \in \mathcal{A}} W_{\mathbf{a}} \beta_{\mathbf{a}}} \quad \text { para cada } \mathbf{a} \in \mathcal{A} .
$$

Variedades Tóricas

El mapeo $\varphi: \Delta \longrightarrow \mathbb{R}^{\ell}$ es la composición de un mapa inyectivo a un espacio proyectivo seguido por una proyección lineal.

$$
\left.\left.\begin{array}{rl}
\varphi: \Delta & \stackrel{\beta}{\longrightarrow} \mathbb{R}_{\geq}^{\mathcal{A}} \\
x & \longrightarrow
\end{array} \beta_{\mathbf{a}}(x) \right\rvert\, \mathbf{a} \in \mathcal{A}\right] \quad\left[y_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\right] \longrightarrow \mathbb{R}^{\mu} \longrightarrow \mathbb{P}_{\mathbf{a} \in \mathcal{A}} y_{\mathbf{a}}\left(1, \mathbf{b}_{\mathbf{a}}\right) .
$$

Variedades Tóricas

Denote la imagen $\beta(\Delta)$ en $\mathbb{R P}_{\geq}^{\mathcal{A}}$ como $X_{\Delta, w}$, esta es la parte positiva de una variedad tórica.

Triángulos de Bézier

$$
\varphi(s, t)=\sum_{k l} \frac{\binom{n}{k l} s^{k} t^{\prime}(n-s-t)^{n-k-1}}{n^{n}} \mathbf{b}_{k l}
$$

La variedad tórica correspondiente es la superficie de Veronese de grado n.

Rectángulos de Bézier

$$
\varphi(s, t)=\sum_{k l} \frac{\binom{m}{k}\binom{n}{l} s^{k}(m-s)^{m-k} t^{l}(n-t)^{n-1}}{m^{m} n^{n}} \mathbf{b}_{k l}
$$

La variedad tórica correspondiente es el producto de Segre de dos curvas racionales normales de grados n y m.

Parches Multilaterales

Precisión Lineal

Mapeo tautológico

Dado un parche tórico (Δ, w), fijemos $\mathbf{b}_{\mathbf{a}}=\mathbf{a}$ para todal $\mathbf{a} \in \mathcal{A}$ para obtener la función

$$
\tau: \Delta \longrightarrow \Delta, \quad x \longmapsto \sum_{\mathbf{a} \in \mathcal{A}} \beta_{\mathbf{a}}(x) \mathbf{a} .
$$

Precisión lineal

El parche tórico (Δ, w) tiene precisión lineal si y sólo si τ es la función identidad.

Teorema (G-Sottile)

Todo parche tórico tiene una única reparametrización con precisión lineal, dada por el inverso del moment map $\mu: X_{\Delta, w} \rightarrow \Delta$.

Precisión Lineal Racional

Dado un conjunto finito $\mathcal{A} \subset \mathbb{Z}^{d} y$ un sistema de pesos $w \in \mathbb{R}_{>}^{\mathcal{A}}$, el polinomio de Laurent $P_{w, \mathcal{A}}$ se define como

$$
P_{w, \mathcal{A}}:=\sum_{\mathbf{a} \in \mathcal{A}} w_{\mathbf{a}} x^{\mathbf{a}}, \quad \text { where } x^{\mathbf{a}}=x_{1}^{\mathbf{a}_{1}} x_{2}^{\mathbf{a}_{2}} \cdots x_{d}^{\mathbf{a}_{d}} .
$$

Teorema (G-Sottile)

El parche tórico (Δ, w) tiene precisión lineal racional si y sólo si

$$
x \longmapsto \frac{1}{P_{w, \mathcal{A}}}\left(x_{1} \frac{\partial}{\partial x_{1}} P_{w, \mathcal{A}}, x_{2} \frac{\partial}{\partial x_{2}} P_{w, \mathcal{A}}, \ldots, x_{d} \frac{\partial}{\partial x_{d}} P_{w, \mathcal{A}}\right)
$$

es un isomorfismo biracional $\mathbb{C}^{d} \longrightarrow \longrightarrow \mathbb{C}^{d}$. En este caso, $P_{w, \mathcal{A}}$ es una transformación polar tórica de Cremona.

Precisión Lineal de Superficies Tóricas

Teorema (Graf Von Bothmer-Ranestad-Sottile)

Un polinomio $P \in \mathbb{C}[x, y]$ define una transformación polar tórica de Cremona si y sólo si es equivalente a una de las siguientes formas
$\square(x+y+1)^{n} \quad(\Longleftrightarrow$ triángulo de Bézier $)$
$\square(x+1)^{m}(y+1)^{n} \quad(\Longleftrightarrow$ rectángulo de Bézier $)$
$\square(x+1)^{m}\left((x+1)^{d}+y\right)^{n} \quad(\Longleftrightarrow$ parche trapezoidal $)$
■ $x^{2}+y^{2}+1-2(x y+x+y)$

Precisión Lineal de Superficies Tóricas

Teorema (Graf Von Bothmer-Ranestad-Sottile)
Un polinomio $P \in \mathbb{C}[x, y]$ define una transformación polar tórica de Cremona si y sólo si es equivalente a una de las siguientes formas
$■(x+y+1)^{n} \quad(\Longleftrightarrow$ triángulo de Bézier $)$
$\square(x+1)^{m}(y+1)^{n} \quad(\Longleftrightarrow$ rectángulo de Bézier $)$
$\square(x+1)^{m}\left((x+1)^{d}+y\right)^{n} \quad(\Longleftrightarrow$ parche trapezoidal $)$

- $x^{2}+y^{2}+1-2(x y+x+y)$

Equivalente

Acción de $\operatorname{SL}(n, \mathbb{Z})$ en los exponentes de los monomios, multiplicación por monomios de Laurent, y multiplicación de variables por escalares.

Parche Trapezoidal

Sean $n, d \geq 1$ and $m \geq 0$ números enteros, y fije

$$
\mathcal{A}=\{(i, j) \mid 0 \leq j \leq n \text { and } 0 \leq i \leq m+d n-d j\},
$$

que son los puntos con coordenadas enteras en el trapezoide

Fije pesos $w_{i j}=\binom{n}{j}\binom{m+d n-d j}{i}$. Las funciones tóricas de Bézier se definen como
$\beta_{i j}(s, t)=\binom{n}{j}\binom{m+d n-d j}{i} s^{i}(m+d n-d t-s)^{m+d n-d j-i} t^{j}(n-t)^{n-j} \mathbb{S}_{H}$

Inyectividad de Parches Tóricos

Orientaciones Compatibles

Sean \mathcal{A} and $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\right\}$ conjuntos finitos de puntos en \mathbb{R}^{d}.
Suponga que $\left\{\mathbf{a}_{0}, \ldots, \mathbf{a}_{d}\right\} \subset \mathcal{A}$ y $\left\{\mathbf{b}_{\mathbf{a}_{0}}, \ldots, \mathbf{b}_{\mathbf{a}_{d}}\right\} \subset \mathcal{B}$ son subconjuntos independientes, entonces cada lista determina una orientación.

Los conjuntos \mathcal{A} y \mathcal{B} son compatibles si cada par de subconjuntos definen la misma orientación o la orientación opuesta.

Orientaciones Compatibles

Sean \mathcal{A} and $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\right\}$ conjuntos finitos de puntos en \mathbb{R}^{d}.
Suponga que $\left\{\mathbf{a}_{0}, \ldots, \mathbf{a}_{d}\right\} \subset \mathcal{A}$ y $\left\{\mathbf{b}_{\mathbf{a}_{0}}, \ldots, \mathbf{b}_{\mathbf{a}_{d}}\right\} \subset \mathcal{B}$ son subconjuntos independientes, entonces cada lista determina una orientación.

Los conjuntos \mathcal{A} y \mathcal{B} son compatibles si cada par de subconjuntos definen la misma orientación o la orientación opuesta.

Orientaciones Compatibles

Sean \mathcal{A} and $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\right\}$ conjuntos finitos de puntos en \mathbb{R}^{d}.
Suponga que $\left\{\mathbf{a}_{0}, \ldots, \mathbf{a}_{d}\right\} \subset \mathcal{A}$ y $\left\{\mathbf{b}_{\mathbf{a}_{0}}, \ldots, \mathbf{b}_{\mathbf{a}_{d}}\right\} \subset \mathcal{B}$ son subconjuntos independientes, entonces cada lista determina una orientación.

Los conjuntos \mathcal{A} y \mathcal{B} son compatibles si cada par de subconjuntos definen la misma orientación o la orientación opuesta.

Orientaciones Compatibles

Sean \mathcal{A} and $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\right\}$ conjuntos finitos de puntos en \mathbb{R}^{d}.
Suponga que $\left\{\mathbf{a}_{0}, \ldots, \mathbf{a}_{d}\right\} \subset \mathcal{A}$ y $\left\{\mathbf{b}_{\mathbf{a}_{0}}, \ldots, \mathbf{b}_{\mathbf{a}_{d}}\right\} \subset \mathcal{B}$ son subconjuntos independientes, entonces cada lista determina una orientación.

Los conjuntos \mathcal{A} y \mathcal{B} son compatibles si cada par de subconjuntos definen la misma orientación o la orientación opuesta.

Orientaciones Compatibles

Sean \mathcal{A} and $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\right\}$ conjuntos finitos de puntos en \mathbb{R}^{d}.
Suponga que $\left\{\mathbf{a}_{0}, \ldots, \mathbf{a}_{d}\right\} \subset \mathcal{A}$ y $\left\{\mathbf{b}_{\mathbf{a}_{0}}, \ldots, \mathbf{b}_{\mathbf{a}_{d}}\right\} \subset \mathcal{B}$ son subconjuntos independientes, entonces cada lista determina una orientación.

Los conjuntos \mathcal{A} y \mathcal{B} son compatibles si cada par de subconjuntos definen la misma orientación o la orientación opuesta.

Orientaciones Compatibles

Sean \mathcal{A} and $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\right\}$ conjuntos finitos de puntos en \mathbb{R}^{d}.
Suponga que $\left\{\mathbf{a}_{0}, \ldots, \mathbf{a}_{d}\right\} \subset \mathcal{A}$ y $\left\{\mathbf{b}_{\mathbf{a}_{0}}, \ldots, \mathbf{b}_{\mathbf{a}_{d}}\right\} \subset \mathcal{B}$ son subconjuntos independientes, entonces cada lista determina una orientación.

Los conjuntos \mathcal{A} y \mathcal{B} son compatibles si cada par de subconjuntos definen la misma orientación o la orientación opuesta.

Orientaciones Compatibles

Sean \mathcal{A} and $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\right\}$ conjuntos finitos de puntos en \mathbb{R}^{d}.
Suponga que $\left\{\mathbf{a}_{0}, \ldots, \mathbf{a}_{d}\right\} \subset \mathcal{A}$ y $\left\{\mathbf{b}_{\mathbf{a}_{0}}, \ldots, \mathbf{b}_{\mathbf{a}_{d}}\right\} \subset \mathcal{B}$ son subconjuntos independientes, entonces cada lista determina una orientación.

Los conjuntos \mathcal{A} y \mathcal{B} son compatibles si cada par de subconjuntos definen la misma orientación o la orientación opuesta.

Orientaciones Compatibles

Sean \mathcal{A} and $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\right\}$ conjuntos finitos de puntos en \mathbb{R}^{d}.
Suponga que $\left\{\mathbf{a}_{0}, \ldots, \mathbf{a}_{d}\right\} \subset \mathcal{A}$ y $\left\{\mathbf{b}_{\mathbf{a}_{0}}, \ldots, \mathbf{b}_{\mathbf{a}_{d}}\right\} \subset \mathcal{B}$ son subconjuntos independientes, entonces cada lista determina una orientación.

Los conjuntos \mathcal{A} y \mathcal{B} son compatibles si cada par de subconjuntos definen la misma orientación o la orientación opuesta.

INYECTIVIDAD DE PARCHES TÓRICOS

Para cada $w \in \mathbb{R}_{>}^{\mathcal{A}}$, sea $\varphi_{w}: \Delta \rightarrow \mathbb{R}^{d}$ el parche tórico de forma (Δ, w) dado por los puntos de control $\mathcal{B} \subset \mathbb{R}^{d}$:

$$
\varphi_{w}(x):=\frac{\sum_{\mathbf{a} \in \mathcal{A}} w_{\mathbf{a}} \beta_{\mathbf{a}}(x) \mathbf{b}_{\mathbf{a}}}{\sum_{\mathbf{a} \in \mathcal{A}} w_{\mathbf{a}} \beta_{\mathbf{a}}(x)}
$$

Teorema (Craciun-G-Sottile)

El mapeo φ_{w} es inyectivo para cada $w \in \mathbb{R}_{>}^{\mathcal{A}}$ si y sólo si \mathcal{A} y \mathcal{B} son compatibles.

El caso $\mathbf{b}_{\mathbf{a}}=\mathbf{a}$ para cada $\mathbf{a} \in \mathcal{A}$ es conocido como el Teorema de Birch, un resultado fundamental en estadística y en geometría tórica.

Inyectividad de Curvas y Superficies de Bézier

Teorema (Craciun-G-Sottile)

Sean $A \subset \mathbb{R}^{d}, w \in \mathbb{R}_{>}^{\mathcal{A}}$, y $\mathcal{B} \subset \mathbb{R}^{n}$ los exponentes, pesos, y puntos de control de un parche tórico. Dada una proyección $\pi: \mathbb{R}^{n}-\rightarrow \mathbb{R}^{d}$ tal que \mathcal{A} es compatible con $\pi(\mathcal{B})$, entonces $\varphi_{w}: \Delta \rightarrow \mathbb{R}^{n}$ es inyectiva.

Polígonos de Control

Sea $\varphi(t)$ la curva de Bézier dada por

$$
\varphi(t)=\sum_{i=0}^{n}\binom{n}{i} t^{i}(1-t)^{n-i} \mathbf{b}_{\mathbf{a}}, \quad t \in[0,1]
$$

con puntos de control $\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ en \mathbb{R}^{ℓ}. El polígono de control es la unión de los segmentos $\overline{\mathbf{b}_{0}, \mathbf{b}_{1}}, \overline{\mathbf{b}_{1}}, \mathbf{b}_{2}, \ldots, \overline{\mathbf{b}_{n-1}}, \mathbf{b}_{n}$.

Deformaciones de Curvas de Bézier

Teorema (Craciun-G-Sottile)

Dados puntos de control en \mathbb{R}^{ℓ}, para cualquier $\epsilon>0$, existen pesos tal que la curva de Bézier correspondiente se encuentra a distancia ϵ del polígono de control.

Politopos de Control

Dado un conjunto de puntos de control en \mathbb{R}^{3}, existen muchas maneras de interpolar usando triángulos para obtener una superficie lineal por pedazos, llamada politopo de control.

Triangulaciones Regulares

TriAngulaciones Irregulares

Politopos Regulares de Control

Fije puntos de control $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\right\} \subset \mathbb{R}^{\ell}$ indexados por $\mathcal{A} \subset \mathbb{R}^{d}$ con $d \leq \ell$. Dada una triangulación regular $\mathcal{T}=\left\{\mathcal{A}_{1}, \ldots, \mathcal{A}_{m}\right\}$ de \mathcal{A}, definimos al politopo regular de control $\mathcal{B}(\mathcal{T})$ como la unión de los simplejos $\operatorname{conv}\left\{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}_{i}\right\}$.

Deformaciones de Superficies de Bézier

Teorema (Craciun-G-Sottile)

Dados $\mathcal{A} \subset \mathbb{R}^{d}, w \in \mathbb{R}_{>}^{\mathcal{A}}, \mathcal{B} \subset \mathbb{R}^{\ell}$ y \mathcal{T} una t. r. de \mathcal{A} inducida por λ. Para cada $t>0$, sea φ_{t} el parche tórico $\left(t^{\lambda(a)} w_{\mathbf{a}}, \mathcal{A}\right)$, entonces dado un $\epsilon>0 \exists t_{0}$ tal que si $t>t_{0}$, la imagen $\varphi_{t}(\Delta)$ está a distancia ϵ de $\mathcal{B}(\mathcal{T})$.

Bibliografía

■ Rimvydas Krasauskas, Toric surface patches, Adv. Comput. Math. 17 (2002), no. 1-2, 89-133.
■ Luis Garcia-Puente and Frank Sottile, Linear precision for parametric patches, to appear in Advances in Comp. Math.

- Hans-Christian Graf van Bothmer, Kristian Ranestad, and Frank Sottile, Linear precision for toric surface patches, 2008. ArXiv:0806.3230.
■ Gheorghe Craciun, Luis Garcia-Puente and Frank Sottile, Some geometrical aspects of control points for toric patches, to appear in Lecture Notes in Computer Science.

