GEOMETRIC PROPERTIES OF TORIC PATCHES

Luis David García-Puente with Gheorghe Craciun and Frank Sottile

Department of Mathematics and Statistics Sam Houston State University

Second International Workshop on Algebraic Geometry and Approximation Theory

OUTLINE

- Parametric patches
- Toric patches
- Properties:
- injectivity of toric patches
- toric deformations

BÉZIER CURVES

BERNSTEIN POLYNOMIALS $B_i^n(t) := {n \choose i} t^i (1-t)^{n-i}$

PARAMETRIC DEFINITION

$$F(t) := \sum_{i=0}^n B_i^n(t) \mathbf{b}_i, \quad t \in [0,1]$$

where $\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_n$ are (control) points in some affine space.

LUIS GARCÍA-PUENTE (SHSU)

PROPERTIES OF BÉZIER CURVES

LINEAR PRECISION

$$\sum_{i=0}^{n} B_i^n(t) \frac{i}{n} = t$$

- $\mathcal{A} = \{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\}.$
- $\Delta = [0, 1]$ is the convex hull of A.
- The Bernstein polynomials are indexed by \mathcal{A} and have domain Δ .
- Linear precision means F(t) is the identity on Δ when $\mathbf{b}_i = \frac{i}{n}$.

4/23

(CONTROL POINT) PATCH SCHEMES

Let $\mathcal{A} \subset \mathbb{R}^d$ (e.g. d = 2) be a finite index set with convex hull Δ .

 $\beta := \{\beta_{\mathbf{a}} : \Delta \to \mathbb{R}_{\geq 0} \mid \mathbf{a} \in \mathcal{A}\}, \text{ basis functions with } \mathbf{1} = \sum_{\mathbf{a}} \beta_{\mathbf{a}}(x).$

Given control points $\mathcal{B} = \{ \mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A} \} \subset \mathbb{R}^{\ell}$ (e.g. $\ell = 3$), get a map

$$F: \Delta \longrightarrow \mathbb{R}^{\ell} \qquad x \longmapsto \sum eta_{a}(x) \mathbf{b}_{a}$$

The image of *F* is a patch with shape Δ . Call (β , A) a patch scheme.

Here, weights have been absorved into the basis functions.

BÉZIER RECTANGLES

$$F(s,t) = \sum_{kl} \frac{\binom{m}{k}\binom{n}{l}s^{k}(m-s)^{m-k}t^{l}(n-t)^{n-l}}{m^{m}n^{n}}\mathbf{b}_{kl}$$

LUIS GARCÍA-PUENTE (SHSU)

MULTI-SIDED PATCHES

LUIS GARCÍA-PUENTE (SHSU)

GEOMETRIC PROPERTIES OF TORIC PATCHES

H

TORIC PATCHES (AFTER KRASAUSKAS)

A polytope Δ with integer vertices is given by facet inequalities

$$\Delta = \left\{ x \in \mathbb{R}^d \mid h_i(x) \geq 0, \ i = 1, \dots, r
ight\},$$

where $h_i(x) = \mathbf{v}_i \cdot x + c_i$ with inward pointing primitive normal vector \mathbf{v}_i .

For each $\mathbf{a} \in \mathcal{A} := \Delta \cap \mathbb{Z}^d$, there is a toric Bézier function

$$\beta_{\mathbf{a}}(x) := h_1(x)^{h_1(\mathbf{a})} h_2(x)^{h_2(\mathbf{a})} \cdots h_r(x)^{h_r(\mathbf{a})}.$$

Let $w = \{w_a \mid a \in A\} \subset \mathbb{R}_>$ be positive weights. The toric patch (w, A) is the patch with basis functions

$$\frac{\textit{W}_{\textbf{a}}\beta_{\textbf{a}}}{\sum_{\textbf{a}\in\mathcal{A}}\textit{W}_{\textbf{a}}\beta_{\textbf{a}}} \quad \text{ for each } \textbf{a}\in\mathcal{A}.$$

BÉZIER TRIANGLES

$$F(s,t) = \sum_{kl} \frac{\binom{n}{kl} s^k t^l (n-s-t)^{n-k-l}}{n^n} \mathbf{b}_{kl}$$

LUIS GARCÍA-PUENTE (SHSU)

SH

TORIC VARIETIES

TAUTOLOGICAL MAP

Given a patch scheme (β , A), set **b**_a = **a** for all **a** $\in A$ to get the map

$$au: \Delta \longrightarrow \Delta, \qquad x \longmapsto \sum_{\mathbf{a} \in \mathcal{A}} eta_{\mathbf{a}}(x) \mathbf{a}.$$

The tautological map τ factors

$$\tau: \Delta \xrightarrow{\beta} \mathbb{RP}^{\mathcal{A}} \xrightarrow{\mu} \Delta$$
$$x \longrightarrow [\beta_{\mathbf{a}}(x) \mid \mathbf{a} \in \mathcal{A}] \quad [y_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}] \longrightarrow \sum_{\mathbf{a} \in \mathcal{A}} y_{\mathbf{a}}(1, \mathbf{a})$$

Write $X_{w,\mathcal{A}}$ for the image $\beta(\Delta)$ in $\mathbb{RP}^{\mathcal{A}}$, which is the positive part of a toric variety. The map $\mu : X_{w,\mathcal{A}} \to \Delta$ is the algebraic moment map.

LUIS GARCÍA-PUENTE (SHSU) GEOMETRIC P

INJECTIVITY OF TORIC PATCHES

\$H

LUIS GARCÍA-PUENTE (SHSU)

GEOMETRIC PROPERTIES OF TORIC PATCHES

TOWSON UNIVERSITY 11 / 23

INJECTIVITY OF CHEMICAL REACTION NETWORKS

SIAM J. APPL. MATH. Vol. 65, No. 5, pp. 1526–1546 © 2005 Society for Industrial and Applied Mathematics

MULTIPLE EQUILIBRIA IN COMPLEX CHEMICAL REACTION NETWORKS: I. THE INJECTIVITY PROPERTY*

GHEORGHE CRACIUN[†] AND MARTIN FEINBERG[‡]

- This paper describes a method to decide whether a given reaction network is injective or not.
- Injectivity implies the absence of multiple positive equilibria in these networks.

DETERMINANT EXPANSIONS OF SIGNED MATRICES AND OF CERTAIN JACOBIANS

J. WILLIAM HELTON, IGOR KLEP, AND RAUL GOMEZ

Let \mathcal{A} and $\mathcal{B} = \{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\}$ be finite sets of points in \mathbb{R}^{d} .

Suppose that $\{a_0, \ldots, a_d\} \subset A$ and $\{b_{a_0}, \ldots, b_{a_d}\} \subset B$ are affinely independent. Then each ordered list determines an orientation.

 \mathcal{A} and \mathcal{B} are compatible if either every such pair of orientations is the same, or if every such pair of orientations is opposite.

 LUIS GARCÍA-PUENTE (SHSU)
 GEOMETRIC PROPERTIES OF TORIC PATCHES
 TOWSON UNIVERSITY
 13

Let \mathcal{A} and $\mathcal{B} = \{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\}$ be finite sets of points in \mathbb{R}^{d} .

Suppose that $\{a_0, \ldots, a_d\} \subset A$ and $\{b_{a_0}, \ldots, b_{a_d}\} \subset B$ are affinely independent. Then each ordered list determines an orientation.

 \mathcal{A} and \mathcal{B} are compatible if either every such pair of orientations is the same, or if every such pair of orientations is opposite.

LUIS GARCÍA-PUENTE (SHSU)

Let \mathcal{A} and $\mathcal{B} = \{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\}$ be finite sets of points in \mathbb{R}^{d} .

Suppose that $\{a_0, \ldots, a_d\} \subset A$ and $\{b_{a_0}, \ldots, b_{a_d}\} \subset B$ are affinely independent. Then each ordered list determines an orientation.

 \mathcal{A} and \mathcal{B} are compatible if either every such pair of orientations is the same, or if every such pair of orientations is opposite.

LUIS GARCÍA-PUENTE (SHSU)

Let \mathcal{A} and $\mathcal{B} = \{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\}$ be finite sets of points in \mathbb{R}^{d} .

Suppose that $\{a_0, \ldots, a_d\} \subset A$ and $\{b_{a_0}, \ldots, b_{a_d}\} \subset B$ are affinely independent. Then each ordered list determines an orientation.

 \mathcal{A} and \mathcal{B} are compatible if either every such pair of orientations is the same, or if every such pair of orientations is opposite.

LUIS GARCÍA-PUENTE (SHSU)

INJECTIVITY OF TORIC PATCHES

For any $w \in \mathbb{R}^{\mathcal{A}}_{>}$, let $F_w \colon \Delta \to \mathbb{R}^d$ be the toric patch of shape (w, \mathcal{A}) given by the control points $\mathcal{B} \subset \mathbb{R}^d$:

$$F_{w}(x) := \frac{\sum_{\mathbf{a} \in \mathcal{A}} w_{\mathbf{a}} \beta_{\mathbf{a}}(x) \mathbf{b}_{\mathbf{a}}}{\sum_{\mathbf{a} \in \mathcal{A}} w_{\mathbf{a}} \beta_{\mathbf{a}}(x)}$$

THEOREM (CRACIUN-G-SOTTILE)

The map F_w is injective for all $w \in \mathbb{R}^A_>$ if and only if A and B are compatible.

The case $\mathbf{b}_{\mathbf{a}} = \mathbf{a}$ for all $\mathbf{a} \in \mathcal{A}$ is known as Birch's Theorem, a fundamental result both for statistics and for toric geometry.

Towson University 14/23

INJECTIVITY OF BÉZIER CURVES AND SURFACES

THEOREM (CRACIUN-G-SOTTILE)

Let $A \subset \mathbb{R}^d$, $w \in \mathbb{R}^A_>$, and $\mathcal{B} \subset \mathbb{R}^n$ be the exponents, weights, and control points of a toric patch. If there is a projection $\pi \colon \mathbb{R}^n \to \mathbb{R}^d$ such that \mathcal{A} is compatible with $\pi(\mathcal{B})$, then $F_w \colon \Delta \to \mathbb{R}^n$ is injective.

CONTROL POLYGONS

Let F(t) be the Bézier curve given by

$$F(t) = \sum_{i=0}^{n} {n \choose i} t^{i} (1-t)^{n-i} \mathbf{b}_{\mathbf{a}}, \quad \text{with } t \in [0,1].$$

with $\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_n$ control points in \mathbb{R}^{ℓ} . The corresponding control polygon is the union of the line segments $\overline{\mathbf{b}_0, \mathbf{b}_1}, \overline{\mathbf{b}_1, \mathbf{b}_2}, \dots, \overline{\mathbf{b}_{n-1}, \mathbf{b}_n}$.

BÉZIER CURVE DEFORMATIONS

THEOREM (CRACIUN-G-SOTTILE)

Given control points in \mathbb{R}^{ℓ} and $\epsilon > 0$, there is a choice of weights so that the Bézier curve lies within a distance ϵ of the control polygon.

CONTROL POLYTOPES

When $F(\Delta)$ is a surface patch, there are many ways to interpolate the control points by triangles to obtain a piecewise linear surface, called a control polytope.

REGULAR TRIANGULATIONS

LUIS GARCÍA-PUENTE (SHSU)

NONREGULAR TRIANGULATION

\$H

LUIS GARCÍA-PUENTE (SHSU)

REGULAR CONTROL POLYTOPE

Let $\mathcal{B} = \{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\} \subset \mathbb{R}^{\ell}$ be control points indexed by $\mathcal{A} \subset \mathbb{R}^{d}$ with $d \leq \ell$. Given a regular triangulation $\mathcal{T} = \{\mathcal{A}_{1}, \dots, \mathcal{A}_{m}\}$ of \mathcal{A} . Define the regular control polytope $\mathcal{B}(\mathcal{T})$ as the union of the simplices $\operatorname{conv}\{\mathbf{b}_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}_{i}\}.$

BÉZIER SURFACE DEFORMATIONS

THEOREM (CRACIUN-G-SOTTILE)

Let $\mathcal{A} \subset \mathbb{R}^d$, $w \in \mathbb{R}^{\mathcal{A}}_{>}$, $\mathcal{B} \subset \mathbb{R}^{\ell}$ and \mathcal{T} a r. t. of \mathcal{A} induced by λ . For each t > 0, let F_t be the toric patch $(t^{\lambda(a)}w_{\mathbf{a}}, \mathcal{A})$. Then, for any $\epsilon > 0 \exists t_0$ such that if $t > t_0$, the image $F_t(\Delta)$ lies within ϵ of $\mathcal{B}(\mathcal{T})$.

BIBLIOGRAPHY

- Rimvydas Krasauskas, Toric surface patches, Adv. Comput. Math. 17 (2002), no. 1-2, 89–133.
- Luis Garcia-Puente and Frank Sottile, Linear precision for parametric patches, to appear in Advances in Comp. Math.
- Hans-Christian Graf van Bothmer, Kristian Ranestad, and Frank Sottile, Linear precision for toric surface patches, 2008. ArXiv:0806.3230.
- Gheorghe Craciun, Luis Garcia-Puente and Frank Sottile, Some geometrical aspects of control points for toric patches, to appear in Lecture Notes in Computer Science.

