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BÉZIER CURVES

BERNSTEIN POLYNOMIALS
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PARAMETRIC DEFINITION

F (t) :=
n∑

i=0

Bn
i (t)bi , t ∈ [0,1]

where b0,b1, . . . ,bn are (control) points in some affine space.
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PROPERTIES OF BÉZIER CURVES

LINEAR PRECISION
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∆ = [0,1] is the convex hull of A.
The Bernstein polynomials are indexed by A and have domain ∆.
Linear precision means F (t) is the identity on ∆ when bi = i

n .
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(CONTROL POINT) PATCH SCHEMES

Let A ⊂ Rd (e.g. d = 2) be a finite index set with convex hull ∆.

β := {βa : ∆→ R≥0 | a ∈ A}, basis functions with 1 =
∑

a βa(x).

Given control points B = {ba | a ∈ A} ⊂ R` (e.g. ` = 3), get a map

F : ∆ −→ R` x 7−→
∑

βa(x)ba

The image of F is a patch with shape ∆. Call (β,A) a patch scheme.

Here, weights have been absorved into the basis functions.
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BÉZIER RECTANGLES

Examples

Rectangular Lattices
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MULTI-SIDED PATCHES

Contemporary Mathematics

Smoothness, Fairness and the need for better multi-sided patches

Jörg Peters

ABSTRACT. This paper surveys the key achievements and outstanding challenges of con-

structing smooth surfaces for geometric design. The focus here is on explicit methods in

parametric form. In particular, recent insights into the curvature magnitude and distribu-

tion of surfaces generated by existing algorithms, based on generalized subdivision and on

splines, are illustrated and corresponding research questions are formulated. These chal-

lenges motivate the search for alternative approaches to multi-sided patch constructions.

1. The need for multi-sided patches

If all smooth surfaces could be modeled by a checkerboard mesh such that every mesh

node is surrounded by four quadrilaterals, we would simply parametrize them by tensor-

product splines and the question, how to create everywhere smooth surfaces, would be

simple to answer from standard spline theory [dB87]:use bidgree to obtain th order

smoothness. However, many surfaces have arbitrary local connectivity and global topo-

logical genus and such surfaces, meshes must, already by the Euler count, either include

-valent vertices where , or -sided facets. Removal of the offending vertices or

facets leads to holes in the mesh. Typically, we can assume that these holes are isolated,

since there exist a number of refinement strategies of an input mesh that create only addi-

tional mesh nodes that are 4-valent (e.g. [CC78]). Since we can associate tensor-product

splines with all the 4-valent nodes nodes, we are left with the task of filling -sided holes

in an otherwise smooth, regularly parametrized surface.

Key words and phrases. Differential geometry, surfaces, continuity, fairness, -sided holes.

supported in part by NSF Grant #9457806-CCR..

FIGURE 1. Multi-sided patches are needed to fill these holes.

c 0000 (copyright holder)
1

Toric patches

Krasauskas defined toric patches X∆, which are a class of multi-sided

patches that generalize Bézier patches.

For these, A is the set of integer points in polytope ∆.

Basis functions are a natural generalization of the Bernstein polynomials.

Toric Variety (projected) Toric Patch

Frank Sottile, Texas A&M University 8
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TORIC PATCHES (AFTER KRASAUSKAS)

A polytope ∆ with integer vertices is given by facet inequalities

∆ =
{

x ∈ Rd | hi(x) ≥ 0, i = 1, . . . , r
}
,

where hi(x) = vi · x + ci with inward pointing primitive normal vector vi .

For each a ∈ A := ∆ ∩ Zd , there is a toric Bézier function

βa(x) := h1(x)h1(a)h2(x)h2(a) · · · hr (x)hr (a).

Let w = {wa | a ∈ A} ⊂ R> be positive weights. The toric patch (w ,A)
is the patch with basis functions

waβa∑
a∈Awaβa

for each a ∈ A.
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BÉZIER TRIANGLES

Examples

Rectangular Lattices
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Example: Bézier triangles

Bézier triangles are toric surface patches.

Set A := {(i, j) ∈ N2 | i ≥ 0, j ≥ 0, n− i− j ≥ 0}, then

w(i,j)β(i,j) := n!
i!j!(n−i−j)!x

iyj(n− x− y)n−i−j.

These are essentially the Bernstein poly-
nomials, which have linear precision.

The corresponding toric variety is the
Veronese surface of degree n.

Choosing control points, get Bézier tri-
angle of degree n.

This picture is a cubic Bézier triangle.

Frank Sottile, Texas A&M University 6F (s, t) =
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TORIC VARIETIES

TAUTOLOGICAL MAP

Given a patch scheme (β,A), set ba = a for all a ∈ A to get the map

τ : ∆ −→ ∆, x 7−→
∑
a∈A

βa(x)a.

The tautological map τ factors

τ : ∆
β−−−−→ RPA µ−−−−→ ∆

x −−−−→ [βa(x) | a ∈ A] [ya | a ∈ A] −−−−→ ∑
a∈A ya(1,a)

Write Xw ,A for the image β(∆) in RPA, which is the positive part of a
toric variety. The map µ : Xw ,A → ∆ is the algebraic moment map.
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INJECTIVITY OF TORIC PATCHES

GEOMETRICAL ASPECTS OF CONTROL POINTS 3

in Section 4 when we investigate the effect of systematically varying the weights of a patch
while keeping the control points and blending functions constant.

The control points and weights affect the shape of the patch which is the image of the
map F (1.1). For example, the convex hull property asserts that the image F (∆) of the
patch lies in the convex hull of the control points. To see this, note that if we set

βa(x) :=
waβa(x)∑

a∈Awaβa(x)
,

then βa(x) ≥ 0 and 1 =
∑

a∈A βa(x). Then formula (1.1) becomes

F (x) =
∑
a∈A

βa(x)ba ,

so that F (x) is a convex combination of the control points and therefore lies in their convex
hull. In fact, if there is a point x ∈ ∆ at which no blending function vanishes, then any
point in the interior of the convex hull of the control points is the image F (x) of some
patch for some choice of weights. In this way, the convex hull property is the strongest
general statement that can be made about the location of a patch.

Another well-known manifestation of control points is the relation of a Bézier curve to
its control polygon. Fix a positive integer d and let A := { i

d
| i = 0, . . . , d} so that ∆ is

the unit interval. The blending functions of a Bézier curve are the Bernstein polynomials,

βi(x) (= β i
d
(x)) :=

(
d
i

)
xi(1− x)d−i .

Given control points b0,b1, . . . ,bd, the control polygon of any Bézier curve with these
control points is the union of the line segments b0,b1, b1,b2, . . . , bd−1,bd between con-
secutive control points. Figure 1 displays two quintic plane Bézier curves with their control
polygons (solid lines). The convex hulls of the control points are indicated by the dashed

b5

b4

b3

b2

b1

b0

b5

b4

b3

b2

b1

b0

Figure 1. Quintic Bézier curves

lines. The first curve has no points of self intersection, while the second curve has one point
of self intersection. While this self intersection may be removed by varying the weights
attached to the control points, by Theorem 3.7 it is impossible to find weights so that a
curve with the first set of control points has a point of self intersection.
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INJECTIVITY OF CHEMICAL REACTION NETWORKS

SIAM J. APPL. MATH. c© 2005 Society for Industrial and Applied Mathematics
Vol. 65, No. 5, pp. 1526–1546

MULTIPLE EQUILIBRIA IN COMPLEX CHEMICAL REACTION
NETWORKS: I. THE INJECTIVITY PROPERTY∗

GHEORGHE CRACIUN† AND MARTIN FEINBERG‡

Abstract. The capacity for multiple equilibria in an isothermal homogeneous continuous flow
stirred tank reactor is determined by the reaction network. Examples show that there is a very
delicate relationship between reaction network structure and the possibility of multiple equilibria.
We suggest a new method for discriminating between networks that have the capacity for multiple
equilibria and those that do not. Our method can be implemented using standard computer al-
gebra software and gives answers for many reaction networks for which previous methods give no
information.

Key words. equilibrium points, chemical reaction networks, chemical reactors, mass-action
kinetics

AMS subject classifications. 80A30, 37C25, 65H10

DOI. 10.1137/S0036139904440278

1. Introduction. We are interested in studying the uniqueness of positive equi-
librium points of a special but large class of systems of nonlinear ordinary differential
equations (ODEs): those that derive from chemical reaction networks. In order to
understand how these equations arise, we will first look informally at an example of
a reaction network and see how it induces a system of ODEs.

Consider some chemical species A, B, C, D, W, X, Y, and Z, and suppose that
the chemical reactions occurring among these species are

A + B ! C, X ! 2A + D ! Y, D ! C + W, B + D ! Z.(1.1)

We will study a particular kind of reactor, called a continuous flow stirred tank
reactor (CFSTR; see [3]) by chemical engineers. Think of a CFSTR as just some
enclosed volume endowed with a feed stream and an outflow stream. Suppose that its
contents are kept at constant temperature and are spatially uniform. Now imagine
that a liquid mixture of species A, B, C, D, W, X, Y, and Z is continuously supplied to
some CFSTR at a constant volumetric flow rate g (volume/time). Also, the contents
of the CFSTR are continuously removed at the same volumetric flow rate g. Chemical
reactions occur in the CFSTR, according to (1.1). We would like to investigate the
temporal evolution of the composition of the mixture within the CFSTR. Let us denote
by cf

A, cf
B , . . . , cf

Z the molar concentrations (moles/volume) in the feed stream and
by cA(t), cB(t), . . . , cZ(t) the molar concentrations within the CFSTR (and effluent
stream) at time t. We will denote the vector of all molar concentrations within the
CFSTR by c(t). We get the picture shown in Figure 1.1.

One source of change in composition is the occurrence of chemical reactions. It
is generally assumed that the occurrence rate of each reaction at time t depends just

∗Received by the editors January 27, 2004; accepted for publication June 26, 2004; published
electronically May 12, 2005.

http://www.siam.org/journals/siap/65-5/44027.html
†Mathematical Biosciences Institute, Ohio State University, 125 W. 18th Avenue, Columbus, OH

43210 (gcraciun@mbi.ohio-state.edu). This author was supported by the National Science Foundation
under agreement 0112050.

‡Department of Chemical Engineering and Department of Mathematics, Ohio State University,
125 Koffolt Laboratories, 140 W. 19th Avenue, Columbus, OH 43210 (feinberg.14@osu.edu).
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This paper describes a method to decide whether a given reaction
network is injective or not.
Injectivity implies the absence of multiple positive equilibria in
these networks.

DETERMINANT EXPANSIONS OF SIGNED MATRICES AND OF CERTAIN
JACOBIANS

J. WILLIAM HELTON, IGOR KLEP, AND RAUL GOMEZ

Abstract. This paper treats two topics: matrices with sign patterns and Jacobians of certain mappings on

the nonnegative orthant Rd
≥0. The main topic is counting the number of positive and negative coefficients in

the determinant expansion of sign patterns and of these Jacobians. The paper is motivated by an approach

to chemical networks initiated by Craciun and Feinberg. We also give a graph-theoretic test for determining
when the sign pattern of the Jacobian of a chemical reaction dynamics is unambiguous.

1. Introduction

This paper treats two topics: matrices with sign patterns and Jacobians of certain mappings. The main
topic is counting the number of positive and negative coefficients in their determinant expansion, but other
types of results occur along the way. It is motivated by an approach to chemical networks initiated by
Craciun and Feinberg, see [CF05,CF06], and extensions observed in [CHWprept].

1.1. Determinants of Sign Patterns. The first topic, see §2, is purely matrix theoretic and generalizes
the classical theory of sign definite matrices [BS95]. This subject considers classes of matrices having a fixed
sign pattern (two matrices are in a given class if and only if each of their entries has the same sign), then
one studies determinants. Call a sign pattern a matrix A with entries which are ±Aij or 0, where Aij are
free variables. To a matrix B we can associate its sign pattern A = SP(B) with ±Aij or 0 in the correct
locations.

Example 1.1. Let B =
[ −1 10

0 −7

]
. Then A = SP(B) =

[ −A11 A12

0 −A22

]
.

If the sign pattern A is square, then the determinant of A is a polynomial in variables Aij , which we
call the determinant expansion of A. We call a square invertible matrix sign-nonsingular (SNS)
if every term in the determinant expansion of its sign pattern has the same nonzero sign. There is a
complete and satisfying theory of these which associates a digraph to a square sign pattern and a test which
determines precisely if the matrix is SNS, see [BMQ68,BS95]. Furthermore, SNS matrices can be recognized
in polynomial-time [RST99].

In this paper we refine the [BMQ68] characterization of SNS matrices by analyzing square sign patterns
and giving a graph-theoretic test to count the number of positive and negative signs in their determinant
expansions; Theorem 2.6. We extend the result to nonsquare matrices and call our test on a matrix the det
sign test.

In the appendix we say precisely when the product of a sign pattern with its transpose admits a sign
pattern, see Theorem 5.1.

Date: 28 September 2008.

2000 Mathematics Subject Classification. 15A48, 80A30.

Key words and phrases. sign patterns, signed matrices, determinants of Jacobians, chemical reaction networks.
Partially supported by the NSF (DMS-0700758, DMS-0757212) and the Ford Motor Co.
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COMPATIBLE ORIENTATIONS

Let A and B = {ba | a ∈ A} be finite sets of points in Rd .

Suppose that {a0, . . . ,ad} ⊂ A and {ba0 , . . . ,bad} ⊂ B are affinely
independent. Then each ordered list determines an orientation.

A and B are compatible if either every such pair of orientations is the
same, or if every such pair of orientations is opposite.

10 G. CRACIUN, L. GARCÍA-PUENTE, AND F. SOTTILE

For example, the first and second sets of labeled points below are compatible, but neither
is compatible with the third.
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We give our generalization of Birch’s Theorem. Suppose that ∆ ⊂ Rd is the convex hull
of A and {βa : ∆ → R≥ | a ∈ A} are toric Bézier functions for A. For any w ∈ RA>, let
Fw : ∆ → Rd be the toric patch of shape (A, w) given by the control points B ⊂ Rd:

(3.4) Fw(x) :=

∑
a∈Awaβa(x)ba∑

a∈Awaβa(x)
.

Theorem 3.5. The map Fw is injective for all w ∈ RA> if and only if A and B are
compatible.

As any set A is compatible with itself, this implies Birch’s Theorem (Theorem 2.6).

Example 3.6. Let be the convex hull of {(0, 0), (1, 0), (0, 1)}. Set A := 3 ∩ Z2 and
let w ∈ RA> be the weights of a cubic Bézier patch (Example 1.5 with d = 3). We consider
choices B ⊂ R2 of control points that are compatible with A. For convenience, we will
require that ba = a when a is a vertex and that if a lies on an edge of 3 , then so does
ba. For these edge control points, compatibility imposes the restriction that they appear
along the edge in the same order as the corresponding exponents from A. The placement
of the center control point is however constrained. We show two compatible choices B.
The first is the situation of Birch’s Theorem, in which ba = a, and in the second we have
moved the edge control points. The region in which we are free to move the center point
is shaded in each.

Proof of Theorem 3.5. Let (t, x) be coordinates for Rd+1 and consider the map Gw : Rd+1
> →

Rd+1 defined by

Gw(t, x) =
∑
a∈A

txawa(1,ba) .

We claim that Fw is injective if and only if Gw is injective.

Since Fw is the composition (2.3) ∆
β−→ XA

w.−→ w.XA
πB−−→ Rd, with the first map an

isomorphism, Fw is injective if and only if the composition of the last two maps is injective.
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COMPATIBLE ORIENTATIONS

Let A and B = {ba | a ∈ A} be finite sets of points in Rd .

Suppose that {a0, . . . ,ad} ⊂ A and {ba0 , . . . ,bad} ⊂ B are affinely
independent. Then each ordered list determines an orientation.

A and B are compatible if either every such pair of orientations is the
same, or if every such pair of orientations is opposite.
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let w ∈ RA> be the weights of a cubic Bézier patch (Example 1.5 with d = 3). We consider
choices B ⊂ R2 of control points that are compatible with A. For convenience, we will
require that ba = a when a is a vertex and that if a lies on an edge of 3 , then so does
ba. For these edge control points, compatibility imposes the restriction that they appear
along the edge in the same order as the corresponding exponents from A. The placement
of the center control point is however constrained. We show two compatible choices B.
The first is the situation of Birch’s Theorem, in which ba = a, and in the second we have
moved the edge control points. The region in which we are free to move the center point
is shaded in each.

Proof of Theorem 3.5. Let (t, x) be coordinates for Rd+1 and consider the map Gw : Rd+1
> →

Rd+1 defined by

Gw(t, x) =
∑
a∈A

txawa(1,ba) .

We claim that Fw is injective if and only if Gw is injective.

Since Fw is the composition (2.3) ∆
β−→ XA

w.−→ w.XA
πB−−→ Rd, with the first map an

isomorphism, Fw is injective if and only if the composition of the last two maps is injective.

10 G. CRACIUN, L. GARĆIA-PUENTE, AND F. SOTTILE

For example, the first and second sets of labeled points below are compatible, but neither
is compatible with the third.

1

2

3

4
1

3

2

4
1

2

4

3

We give our generalization of Birch’s Theorem. Suppose that ∆ ⊂ Rd is the convex hull
of A and {βa : ∆ → R≥ | a ∈ A} are toric Bézier functions for A. For any w ∈ RA>, let
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INJECTIVITY OF TORIC PATCHES

For any w ∈ RA>, let Fw : ∆→ Rd be the toric patch of shape (w ,A)
given by the control points B ⊂ Rd :

Fw (x) :=

∑
a∈Awaβa(x) ba∑

a∈Awaβa(x)
.

THEOREM (CRACIUN-G-SOTTILE)

The map Fw is injective for all w ∈ RA> if and only if A and B are
compatible.

The case ba = a for all a ∈ A is known as Birch’s Theorem, a
fundamental result both for statistics and for toric geometry.
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INJECTIVITY OF BÉZIER CURVES AND SURFACES

THEOREM (CRACIUN-G-SOTTILE)

Let A ⊂ Rd , w ∈ RA>, and B ⊂ Rn be the exponents, weights, and
control points of a toric patch. If there is a projection π : Rn− → Rd

such that A is compatible with π(B), then Fw : ∆→ Rn is injective.
12 G. CRACIUN, L. GARCÍA-PUENTE, AND F. SOTTILE

the same order as the exponents A = {0, 1, 2, 3, 4, 5}, which implies that the curve has no
self intersections.

π

!

b5

b4

b3

b2

b1

b0

π(bi)

4. Control polytopes and toric degenerations

The convex hull property asserts that the image, F (∆), of a toric Bézier patch of shape
(A, w) given by control points B = {ba | a ∈ A} ⊂ Rn and weights w ∈ RA> lies in the
convex hull of the control points. When F (∆) is a curve, the control points may be joined
sequentially to form the control polygon, which is a piecewise linear representation of the
curve. When F (∆) is however a surface patch, there are many ways to interpolate the
control points by triangles or other polygons to obtain a piecewise linear surface, called a
control polytope, that represents the patch. The shape of this control polytope affects the
shape of the patch. For example, when the control points have the form (a, λ(a)) for λ a
convex function, then the patch is convex [6, 5]. Also, Leroy [15] uses a particular control
polytope for the graph of a function to obtain certificates of positivity for polynomials.

Among all control polytopes for a given set of control points, we identify the class of
regular control polytopes, which come from regular triangulations of the exponents A.
These regular control polytopes are related to the shape of the patch in the following
precise manner: There is a choice of weights so that a toric Bézier patch is arbitrarily close
to a given control polytope if and only if that polytope is regular.

4.1. Bézier curves. It is instructive to begin with Bézier curves. A Bézier curve of degree
d in Rn with weights w is the composition (2.3),

[0, 1]
β−→ d+1 w.−−→ d+1 πB−−→ Rn ,

where β = (β0, . . . , βd) with βi(x) =
(

d
i

)
xi(1−x)d−i for x ∈ [0, 1]. Then the map β is given

by zi =
(

d
i

)
xi(1 − x)d−i, for i = 0, . . . , d. Here, (z0, . . . , zd) ∈ Rd+1

≥ with z0 + · · · + zd = 1

are the coordinates for
d+1

. The image β[0, 1] ⊂ d+1
is defined by the binomials

(4.1)
(

d
i

)(
d
j

)
zazb −

(
d
a

)(
d
b

)
zizj = 0 , for a + b = i + j .

(Indeed, suppose that (z1, . . . , zd) ∈ Rd+1
≥ satisfies (4.1). Setting x := z1/(dz0 + z1), then

we may solve these equations to obtain zi =
(

d
i

)
xi(1− x)d−i = βi(x).)
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CONTROL POLYGONS

Let F (t) be the Bézier curve given by

F (t) =
n∑

i=0

(
n
i

)
t i(1− t)n−iba, with t ∈ [0,1],

with b0,b1, . . . ,bn control points in R`. The corresponding control
polygon is the union of the line segments b0,b1,b1,b2, . . . ,bn−1,bn.

GEOMETRICAL ASPECTS OF CONTROL POINTS 3

in Section 4 when we investigate the effect of systematically varying the weights of a patch
while keeping the control points and blending functions constant.

The control points and weights affect the shape of the patch which is the image of the
map F (1.1). For example, the convex hull property asserts that the image F (∆) of the
patch lies in the convex hull of the control points. To see this, note that if we set

βa(x) :=
waβa(x)∑

a∈Awaβa(x)
,

then βa(x) ≥ 0 and 1 =
∑

a∈A βa(x). Then formula (1.1) becomes

F (x) =
∑
a∈A

βa(x)ba ,

so that F (x) is a convex combination of the control points and therefore lies in their convex
hull. In fact, if there is a point x ∈ ∆ at which no blending function vanishes, then any
point in the interior of the convex hull of the control points is the image F (x) of some
patch for some choice of weights. In this way, the convex hull property is the strongest
general statement that can be made about the location of a patch.

Another well-known manifestation of control points is the relation of a Bézier curve to
its control polygon. Fix a positive integer d and let A := { i

d
| i = 0, . . . , d} so that ∆ is

the unit interval. The blending functions of a Bézier curve are the Bernstein polynomials,

βi(x) (= β i
d
(x)) :=

(
d
i

)
xi(1− x)d−i .

Given control points b0,b1, . . . ,bd, the control polygon of any Bézier curve with these
control points is the union of the line segments b0,b1, b1,b2, . . . , bd−1,bd between con-
secutive control points. Figure 1 displays two quintic plane Bézier curves with their control
polygons (solid lines). The convex hulls of the control points are indicated by the dashed

b5

b4

b3

b2

b1

b0

b5

b4

b3

b2

b1

b0

Figure 1. Quintic Bézier curves

lines. The first curve has no points of self intersection, while the second curve has one point
of self intersection. While this self intersection may be removed by varying the weights
attached to the control points, by Theorem 3.7 it is impossible to find weights so that a
curve with the first set of control points has a point of self intersection.
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BÉZIER CURVE DEFORMATIONS

THEOREM (CRACIUN-G-SOTTILE)

Given control points in R` and ε > 0, there is a choice of weights so
that the Bézier curve lies within a distance ε of the control polygon.

GEOMETRICAL ASPECTS OF CONTROL POINTS 3

in Section 4 when we investigate the effect of systematically varying the weights of a patch
while keeping the control points and blending functions constant.

The control points and weights affect the shape of the patch which is the image of the
map F (1.1). For example, the convex hull property asserts that the image F (∆) of the
patch lies in the convex hull of the control points. To see this, note that if we set

βa(x) :=
waβa(x)∑

a∈Awaβa(x)
,

then βa(x) ≥ 0 and 1 =
∑

a∈A βa(x). Then formula (1.1) becomes

F (x) =
∑
a∈A

βa(x)ba ,

so that F (x) is a convex combination of the control points and therefore lies in their convex
hull. In fact, if there is a point x ∈ ∆ at which no blending function vanishes, then any
point in the interior of the convex hull of the control points is the image F (x) of some
patch for some choice of weights. In this way, the convex hull property is the strongest
general statement that can be made about the location of a patch.

Another well-known manifestation of control points is the relation of a Bézier curve to
its control polygon. Fix a positive integer d and let A := { i

d
| i = 0, . . . , d} so that ∆ is

the unit interval. The blending functions of a Bézier curve are the Bernstein polynomials,

βi(x) (= β i
d
(x)) :=

(
d
i

)
xi(1− x)d−i .

Given control points b0,b1, . . . ,bd, the control polygon of any Bézier curve with these
control points is the union of the line segments b0,b1, b1,b2, . . . , bd−1,bd between con-
secutive control points. Figure 1 displays two quintic plane Bézier curves with their control
polygons (solid lines). The convex hulls of the control points are indicated by the dashed
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Figure 1. Quintic Bézier curves

lines. The first curve has no points of self intersection, while the second curve has one point
of self intersection. While this self intersection may be removed by varying the weights
attached to the control points, by Theorem 3.7 it is impossible to find weights so that a
curve with the first set of control points has a point of self intersection.
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We will also show that the control polygon may be approximated by a Bézier curve. We
state a simplified version of Theorem 4.4 from Section 4.

Theorem. Given control points in Rn for a Bézier curve and some number ε > 0, there
is a choice of weights so that the image F [0, 1] of the Bézier curve lies within a distance ε
of the control polygon.

For example, we display one of the quintic curves from Figure 1, but with weights on b0—
b5 of (1, 202, 203, 203, 202, 1) and (1, 3002, 3003, 3003, 3002, 1), respectively. In the second we
do not draw the control polygon, for that would obscure the curve.
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1.1. Toric Patches. Krasauskas [14] introduced toric patches as a generalization of the
classical Bézier and tensor product patches. These are based upon toric varieties from
algebraic geometry and may have shape any polytope with integer vertices. The articles [3,
18] provide an introduction to toric varieties for geometric modeling.

A polytope ∆ is defined by its facet inequalities

∆ = {x ∈ Rd | 0 ≤ hi(x) , i = 1, . . . , "} .

Here, ∆ has " facets (faces of maximal dimension) and for each i = 1, . . . , ", hi(x) = vi·x+ci

is the linear function defining the ith facet, where vi ∈ Zd is the (inward oriented) primitive
vector normal to the facet and ci ∈ Z.

For example, if our polytope is the triangle with vertices (0, 0), (d, 0), and (0, d),

(1.3) d := {(x, y) ∈ R2 | 0 ≤ x, y and 0 ≤ d− (x + y)} ,

then we have h1 = x, h2 = y, and h3 = d − x − y. Here, d is the unit triangle with
vertices (0, 0), (1, 0), and (0, 1) scaled by a factor of d.

Let A ⊂ ∆∩Zd be any subset of the integer points of ∆ which includes its vertices. For
every a ∈ A, Krasauskas defined the toric Bézier function

(1.4) βa(x) := h1(x)h1(a)h2(x)h2(a) · · ·h!(x)h!(a) ,

which is non-negative on ∆ and the collection of all βa has no common zeroes on ∆. These
are blending functions for the toric patch of shape A. If we choose weights w ∈ RA and
multiply the formula (1.4) by wa, we obtain blending functions for the toric patch of shape
(A, w).
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CONTROL POLYTOPES

When F (∆) is a surface patch, there are many ways to interpolate the
control points by triangles to obtain a piecewise linear surface, called a
control polytope.
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Definition 4.7. Let B = {ba | a ∈ A} ⊂ Rd be a collection of control points indexed by
a finite set of exponents A ⊂ Rd with d ≤ n. Given a regular triangulation T = {Ai | i =
1, . . . , m} of A we define the control polytope as follows. For each d-simplex Ai in T , the
corresponding points of B span a (possibly degenerate) simplex

conv{ba | a ∈ Ai} .

The union of these simplices in Rn forms the regular control polytope B(T ) that is induced
by the regular triangulation T of A. This is a simplicial complex in Rn with vertices in B
that has the same combinatorial type as the triangulation T of A.

If the coordinate points (ea | a ∈ A) of RA are our control points (these are the vertices

of
A
), then the regular control polytope is just the geometric realization |T | of the

simplicial complex T , which is a subcomplex of the simplex
A
. In general, B(T ) is the

image of this geometric realization |T | ⊂ A
under the projection πB.

Example 4.8. Let A := 3 ∩Z2, the exponents for a cubic Bézier triangle. Here are the
three control polytopes corresponding to the last three regular triangulations of (4.6), all
with the same control points.

The reason that we introduce regular control polytopes is that they may be approximated
by toric Bézier patches.

Theorem 4.9. Let A ⊂ Rd, w ∈ RA
>, and B ⊂ Rn be exponents, weights, and control

points for a toric Bézier patch. Suppose that T is a regular triangulation of A induced by
a lifting function λ : A → R. For each t > 0, let Ft : ∆ → Rn be the toric Bézier patch of
shape A with control points B and weights tλ(a)wa. Then, for any ε > 0 there exists a t0
such that if t > t0, the image Ft(∆) lies within ε of the control polytope B(T ).

We illustrate Theorem 4.9 for the toric patch of Example 4.8. On the left below is
the toric Bézier triangle with the weights of Example 1.5. The second and third patches
are deformations of it corresponding to the lifting function inducing the leftmost control
polytope of Example 4.8. The values of t are 1, 5, and 100, as we move from left to right.
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REGULAR TRIANGULATIONS

GEOMETRICAL ASPECTS OF CONTROL POINTS 15

The upper facets of Pλ are those facets whose outward pointing normal vector has positive
last coordinate. Any face of an upper facet is an upper face. We illustrate this below when
d = 1, where the displayed arrows are outward pointing normal vectors to upper facets.

(4.5) λ(A) Pλ

A
Projecting these upper facets to Rd yields a regular polyhedral subdivision of the convex

hull of A, which is the image of Pλ. For our purposes, we will need to assume that the
lifting function is generic in that all upper facets of Pλ are simplices. In this case, we obtain
a regular triangulation of A. This consists of a collection

{Ai | i = 1, . . . , m}
of subsets A, where each subset Ai consists of d+1 elements and spans a d-dimensional
simplex. We regard all subsets of the facetsAi as faces of the triangulation. These simplices
form a subdivision in that they cover the convex hull of A and any two with a non-empty
intersection meet along a common face.

The subdivision induced by the lifting function in (4.5) consists of three intervals result-
ing from removal of the middle point of A, which does not participate in the subdivision
as it is not lifted high enough.

A set may have many regular triangulations, and not every point needs to participate in
a given triangulation. Here are four regular triangulations of 3 ∩Z2, where we draw the
edges in the triangulation.

(4.6)

Not every triangulation is regular. We may assume that a lifting function λ for the
triangulation below takes a constant value at the three interior points. The clockwise
neighbor of any vertex must be lifted lower than that vertex. (Consider the figure they
form with the parallel edge of the interior triangle.) Since the edge of the big triangle is
lifted to a convex path, this is impossible, except in some M.C. Escher woodcuts.
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Not every triangulation is regular. We may assume that a lifting function λ for the
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NONREGULAR TRIANGULATION

GEOMETRICAL ASPECTS OF CONTROL POINTS 15

The upper facets of Pλ are those facets whose outward pointing normal vector has positive
last coordinate. Any face of an upper facet is an upper face. We illustrate this below when
d = 1, where the displayed arrows are outward pointing normal vectors to upper facets.

(4.5) λ(A) Pλ

A
Projecting these upper facets to Rd yields a regular polyhedral subdivision of the convex

hull of A, which is the image of Pλ. For our purposes, we will need to assume that the
lifting function is generic in that all upper facets of Pλ are simplices. In this case, we obtain
a regular triangulation of A. This consists of a collection

{Ai | i = 1, . . . , m}
of subsets A, where each subset Ai consists of d+1 elements and spans a d-dimensional
simplex. We regard all subsets of the facetsAi as faces of the triangulation. These simplices
form a subdivision in that they cover the convex hull of A and any two with a non-empty
intersection meet along a common face.

The subdivision induced by the lifting function in (4.5) consists of three intervals result-
ing from removal of the middle point of A, which does not participate in the subdivision
as it is not lifted high enough.

A set may have many regular triangulations, and not every point needs to participate in
a given triangulation. Here are four regular triangulations of 3 ∩Z2, where we draw the
edges in the triangulation.

(4.6)

Not every triangulation is regular. We may assume that a lifting function λ for the
triangulation below takes a constant value at the three interior points. The clockwise
neighbor of any vertex must be lifted lower than that vertex. (Consider the figure they
form with the parallel edge of the interior triangle.) Since the edge of the big triangle is
lifted to a convex path, this is impossible, except in some M.C. Escher woodcuts.
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REGULAR CONTROL POLYTOPE

Let B = {ba | a ∈ A} ⊂ R` be control points indexed by A ⊂ Rd with
d ≤ `. Given a regular triangulation T = {A1, . . . ,Am} of A. Define the
regular control polytope B(T ) as the union of the simplices
conv{ba | a ∈ Ai}.
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triangulation below takes a constant value at the three interior points. The clockwise
neighbor of any vertex must be lifted lower than that vertex. (Consider the figure they
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Definition 4.7. Let B = {ba | a ∈ A} ⊂ Rd be a collection of control points indexed by
a finite set of exponents A ⊂ Rd with d ≤ n. Given a regular triangulation T = {Ai | i =
1, . . . , m} of A we define the control polytope as follows. For each d-simplex Ai in T , the
corresponding points of B span a (possibly degenerate) simplex

conv{ba | a ∈ Ai} .

The union of these simplices in Rn forms the regular control polytope B(T ) that is induced
by the regular triangulation T of A. This is a simplicial complex in Rn with vertices in B
that has the same combinatorial type as the triangulation T of A.

If the coordinate points (ea | a ∈ A) of RA are our control points (these are the vertices

of
A
), then the regular control polytope is just the geometric realization |T | of the

simplicial complex T , which is a subcomplex of the simplex
A
. In general, B(T ) is the

image of this geometric realization |T | ⊂ A
under the projection πB.

Example 4.8. Let A := 3 ∩Z2, the exponents for a cubic Bézier triangle. Here are the
three control polytopes corresponding to the last three regular triangulations of (4.6), all
with the same control points.

The reason that we introduce regular control polytopes is that they may be approximated
by toric Bézier patches.

Theorem 4.9. Let A ⊂ Rd, w ∈ RA
>, and B ⊂ Rn be exponents, weights, and control

points for a toric Bézier patch. Suppose that T is a regular triangulation of A induced by
a lifting function λ : A → R. For each t > 0, let Ft : ∆ → Rn be the toric Bézier patch of
shape A with control points B and weights tλ(a)wa. Then, for any ε > 0 there exists a t0
such that if t > t0, the image Ft(∆) lies within ε of the control polytope B(T ).

We illustrate Theorem 4.9 for the toric patch of Example 4.8. On the left below is
the toric Bézier triangle with the weights of Example 1.5. The second and third patches
are deformations of it corresponding to the lifting function inducing the leftmost control
polytope of Example 4.8. The values of t are 1, 5, and 100, as we move from left to right.
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BÉZIER SURFACE DEFORMATIONS

THEOREM (CRACIUN-G-SOTTILE)

Let A ⊂ Rd , w ∈ RA>, B ⊂ R` and T a r. t. of A induced by λ. For each
t > 0, let Ft be the toric patch

(
tλ(a)wa,A

)
. Then, for any ε > 0 ∃ t0

such that if t > t0, the image Ft (∆) lies within ε of B(T ).
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