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Objects

Phylogenetic Trees with three, four, and five leaves.

Rooted or un–rooted trees, with or without molecular clock
assumption,

Group models of evolution:
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Goals

Describe the model parameterization
in the probability simplex,
in the Fourier coordinates.

Compute
dimension – least number of parameters needed to describe
the model,
degree,
embedding dimension – sufficient statistics,
singular locus (its dimension and degree),
ML degree,
MLE.

Develop an alternative analytic method for tree reconstruction.

Comparison between analytic method and numerical methods like
DNAml.

Create a web page to make technology available to computational
biologists.
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Parameterization in the probability simplex

Kimura 2 model on the quartet un–rooted tree.

Order the bases as A, G, C, T . Attached to each edge e, there is
a symmetric matrix Me equal to
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The probability of observing i, j, k, l at the leaves equals

pijkl =
∑

(w1,w2)∈{A,G,C,T}2

M1(w1, i)M2(w1, j)M3(w2, k)M4(w2, l)M5(w1, w2).

For any Z/2Z × Z/2Z based model we have

pijk = pijk1 = p(i+2)(j+2)(k+2)2 = p(i+3)(j+3)(k+3)3 = p(i+4)(j+4)(k+4)4.

For example pCCC = pCCCA = pTTTG = pAAAC = pGGGT .

Hence, the embedding dimension of the model is less or equal to
64.
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Fourier parameterization

Consider the “giraffe” model on four taxa with uniform root
distribution and molecular clock.

Note that without molecular clock, both models are equivalent.

The Fourier transformation is a linear map that simultaneously
diagonalizes all matrices Me. So we have five diagonal
4 × 4–matrices X, Y, Z, V, W .

The Fourier parameters are denoted qijk representing qijkl, where
l = i + j + k.

The Fourier parameterization is the monomial parameterization

qijk = xiyjzk+lvkwl = xiyjzi+jvkwi+j+k.

The Kimura 2 assumption implies

x3 = x4, y3 = y4, z3 = z4, v3 = v4, w3 = w4.

The molecular clock assumption implies X = Y , V = W ,
X = ZW , that is

xi = yi, vi = wi, xi = vizi.

The binomial ideal I = toric−ideal(monomial map) is the ideal of
polynomial invariants in the Fourier parameters.
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Solving the likelihood equations

I // MI
// K = ker(MI) // IK,u

// J = sat(IK,u, slocus(I)).

Kernel of a polynomial matrix:
Linear algebra approach to compute kernel (HMM group).
Smaller matrices: Enough codim(I) equations to do
computations.
Direct computations on the Fourier parameters.
Homotopy methods (PHC) to avoid kernel computation.

Lower bounds for ML degree: Taking a subcollection of the rows
of MI .

Upper bounds for ML degree:
Degree of zero-dimensional IK,u before saturation,

ML degree bounded by a sum of mixed volumes of Newton
polytopes of the polynomial parameterization.
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Trees with three leaves

d ed m sd sm MLd
BS 4 7 8 1 24 92

JC 3 4 3 1 3 23
K2 6 9 12 3 22
K3 9 15 96
BS 2 2 1 - - 1

JC 2 3 13 1 1 15
K2 4 6 6 2 10 190
K3 6 9 12 3 22
BS 1 1 1 - - 1

JC 1 2 3 0 2 7
K2 2 3 3 1 1 15
K3 3 4 3 1 3 40
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Trees with four leaves no molecular clock

d ed m sd sm MLd
BS 5 7 4 2 4 14

JC 5 14
K2 10
K3 15 63
BS 4 7 8 1 24 92

JC 4
K2 8
K3 12
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Trees with four leaves molecular clock

d ed m sd sm MLd
BS 3 4 (7) 2 1 1 1

JC 3 14
K2 6 108
K3 9 1619
BS 3 4 (7) 2 1 1 9

JC 3 14
K2 6 129
K3 9 1619
BS 2 7 2 0 1 6

JC 2 11
K2 4 45
K3 6 227
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Trees with four leaves molecular clock

d ed m sd sm MLd
BS 2 3 2 0 1 3

JC 2 5
K2 4 18
K3 6 80
BS 1 2 2 0 1 3

JC 1 4 0 2
K2 2 8
K3 3 16
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