

Small Phylogenetic Trees

M. Casanellas, M. Contois, L. D. Garcia, S. Hosten, Y. Kim, D. Levy, S. Snir

lgpuente@msri.org

MSRI

Objects

- Phylogenetic Trees with three, four, and five leaves.
- Rooted or un–rooted trees, with or without molecular clock assumption,
- Group models of evolution:

MSRI

Binary Symmetric
$$\begin{pmatrix} a_0 & a_1 \\ a_1 & a_0 \end{pmatrix}$$
, Jukes–Cantor $\begin{pmatrix} b & a & a & a \\ & b & a & a \\ & & b & a \\ & & & b \end{pmatrix}$,
Kimura 2 $\begin{pmatrix} * & a & b & a \\ & * & a & b \\ & & * & a \\ & & & * \end{pmatrix}$, Kimura 3 $\begin{pmatrix} * & a & b & c \\ & * & c & b \\ & & * & a \\ & & & * \end{pmatrix}$.

- Describe the model parameterization
 - in the probability simplex,
 - in the Fourier coordinates.
- Compute
 - dimension least number of parameters needed to describe the model,
 - degree,
 - embedding dimension sufficient statistics,
 - singular locus (its dimension and degree),
 - ML degree,
 - MLE.
- Develop an alternative analytic method for tree reconstruction.
- Comparison between analytic method and numerical methods like DNAml.
- Create a web page to make technology available to computational biologists.

Kimura 2 model on the quartet un-rooted tree.

Order the bases as A, G, C, T. Attached to each edge e, there is a symmetric matrix M_e equal to

$$\begin{pmatrix} c_e & a_e & b_e & b_e \\ & c_e & b_e & b_e \\ & & c_e & a_e \\ & & & c_e \end{pmatrix}$$

Kimura 2 model on the quartet un-rooted tree.

The probability of observing i, j, k, l at the leaves equals

 $p_{ijkl} = \sum_{(w_1, w_2) \in \{A, G, C, T\}^2} M_1(w_1, i) M_2(w_1, j) M_3(w_2, k) M_4(w_2, l) M_5(w_1, w_2)$

● For any $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ based model we have

 $p_{ijk} = p_{ijk1} = p_{(i+2)(j+2)(k+2)2} = p_{(i+3)(j+3)(k+3)3} = p_{(i+4)(j+4)(k+4)4}.$

- For example $p_{CCC} = p_{CCCA} = p_{TTTG} = p_{AAAC} = p_{GGGT}$.
- Hence, the embedding dimension of the model is less or equal to 64.

Consider the "giraffe" model on four taxa with uniform root distribution and molecular clock.

- Note that without molecular clock, both models are equivalent.
- The Fourier transformation is a linear map that simultaneously diagonalizes all matrices M_e . So we have five diagonal 4×4 -matrices X, Y, Z, V, W.
- The Fourier parameters are denoted q_{ijk} representing q_{ijkl} , where l = i + j + k.

Consider the "giraffe" model on four taxa with uniform root distribution and molecular clock.

The Fourier parameterization is the monomial parameterization

 $q_{ijk} = x_i y_j z_{k+l} v_k w_l = x_i y_j z_{i+j} v_k w_{i+j+k}.$

The Kimura 2 assumption implies

 $x_3 = x_4, \quad y_3 = y_4, \quad z_3 = z_4, \quad v_3 = v_4, \quad w_3 = w_4.$

The molecular clock assumption implies X = Y, V = W, X = ZW, that is

$$x_i = y_i, \quad v_i = w_i, \quad x_i = v_i z_i.$$

The binomial ideal I = toric - ideal(monomial map) is the ideal of polynomial invariants in the Fourier parameters.

$$I \longrightarrow M_I \longrightarrow K = \ker(M_I) \longrightarrow I_{K,u} \longrightarrow J = \operatorname{sat}(I_{K,u}, \operatorname{slocus}(I)).$$

- Kernel of a polynomial matrix:
 - Linear algebra approach to compute kernel (HMM group).
 - Smaller matrices: Enough codim(I) equations to do computations.
 - Direct computations on the Fourier parameters.
 - Homotopy methods (PHC) to avoid kernel computation.
- Lower bounds for ML degree: Taking a subcollection of the rows of M_I .
- Upper bounds for ML degree:
 - Degree of zero-dimensional $I_{K,u}$ before saturation,
 - ML degree bounded by a sum of mixed volumes of Newton polytopes of the polynomial parameterization.

Trees with three leaves

	d	ed	m	sd	sm	MLd
BS	4	7	8	1	24	92
JC	3	4	3	1	3	23
K2	6	9	12	3	22	
K3	9	15	96			
BS	2	2	1	-	-	1
JC	2	3	13	1	1	15
K2	4	6	6	2	10	190
K3	6	9	12	3	22	
BS	1	1	1	-	-	1
JC	1	2	3	0	2	7
K2	2	3	3	1	1	15
K3	3	4	3	1	3	40

	d	ed	m	sd	sm	MLd
BS	5	7	4	2	4	14
JC	5	14				
K2	10					
K3	15	63				
BS	4	7	8	1	24	92
JC	4					
K2	8					
K3	12					

	d	ed	m	sd	sm	MLd
BS	3	4 (7)	2	1	1	1
JC	3		14			
K2	6		108			
K3	9		1619			
BS	3	4 (7)	2	1	1	9
JC	3		14			
K2	6		129			
K3	9		1619			
BS	2	7	2	0	1	6
JC	2		11			
K2	4		45			
K3	6		227			

	d	ed	m	sd	sm	MLd
BS	2	3	2	0	1	3
JC	2		5			
K2	4		18			
K3	6		80			
BS	1	2	2	0	1	3
JC	1		4	0	2	
K2	2		8			
 K3	3		16			