## Small Phylogenetic Trees

M. Casanellas, M. Contois, L. D. Garcia, S. Hosten, Y. Kim, D. Levy, S. Snir lgpuente@msri.org

MSRI

## Objects

- Phylogenetic Trees with three, four, and five leaves.
- Rooted or un-rooted trees, with or without molecular clock assumption,
- Group models of evolution:
- Binary Symmetric $\left(\begin{array}{cc}a_{0} & a_{1} \\ a_{1} & a_{0}\end{array}\right)$, Jukes-Cantor $\left(\begin{array}{cccc}b & a & a & a \\ & b & a & a \\ & & b & a \\ & & & b\end{array}\right)$,
- Kimura $2\left(\begin{array}{llll}* & a & b & a \\ & * & a & b \\ & & * & a \\ & & & *\end{array}\right)$, $\operatorname{Kimura} 3\left(\begin{array}{cccc}* & a & b & c \\ & * & c & b \\ & & * & a \\ & & & *\end{array}\right)$.


## Goals

- Describe the model parameterization
- in the probability simplex,
- in the Fourier coordinates.
- Compute
- dimension - least number of parameters needed to describe the model,
- degree,
- embedding dimension - sufficient statistics,
- singular locus (its dimension and degree),
- ML degree,
- MLE.
- Develop an alternative analytic method for tree reconstruction.
- Comparison between analytic method and numerical methods like DNAml.
- Create a web page to make technology available to computational biologists.


## Parameterization in the probability simplex

- Kimura 2 model on the quartet un-rooted tree.

- Order the bases as $A, G, C, T$. Attached to each edge $e$, there is a symmetric matrix $M_{e}$ equal to

$$
\left(\begin{array}{cccc}
c_{e} & a_{e} & b_{e} & b_{e} \\
& c_{e} & b_{e} & b_{e} \\
& & c_{e} & a_{e} \\
& & & c_{e}
\end{array}\right)
$$

## Parameterization in the probability simplex

- Kimura 2 model on the quartet un-rooted tree.

- The probability of observing $i, j, k, l$ at the leaves equals

$$
p_{i j k l}=\sum_{\left(w_{1}, w_{2}\right) \in\{A, G, C, T\}^{2}} M_{1}\left(w_{1}, i\right) M_{2}\left(w_{1}, j\right) M_{3}\left(w_{2}, k\right) M_{4}\left(w_{2}, l\right) M_{5}\left(w_{1}, w_{2}\right)
$$

- For any $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ based model we have

$$
p_{i j k}=p_{i j k 1}=p_{(i+2)(j+2)(k+2) 2}=p_{(i+3)(j+3)(k+3) 3}=p_{(i+4)(j+4)(k+4) 4}
$$

- For example $p_{C C C}=p_{C C C A}=p_{T T T G}=p_{A A A C}=p_{G G G T}$.
- Hence, the embedding dimension of the model is less or equal to 64.


## Fourier parameterization

- Consider the "giraffe" model on four taxa with uniform root distribution and molecular clock.

- Note that without molecular clock, both models are equivalent.
- The Fourier transformation is a linear map that simultaneously diagonalizes all matrices $M_{e}$. So we have five diagonal $4 \times 4$-matrices $X, Y, Z, V, W$.
- The Fourier parameters are denoted $q_{i j k}$ representing $q_{i j k l}$, where $l=i+j+k$.


## Fourier parameterization

- Consider the "giraffe" model on four taxa with uniform root distribution and molecular clock.

- The Fourier parameterization is the monomial parameterization

$$
q_{i j k}=x_{i} y_{j} z_{k+l} v_{k} w_{l}=x_{i} y_{j} z_{i+j} v_{k} w_{i+j+k}
$$

- The Kimura 2 assumption implies

$$
x_{3}=x_{4}, \quad y_{3}=y_{4}, \quad z_{3}=z_{4}, \quad v_{3}=v_{4}, \quad w_{3}=w_{4}
$$

- The molecular clock assumption implies $X=Y, V=W$, $X=Z W$, that is

$$
x_{i}=y_{i}, \quad v_{i}=w_{i}, \quad x_{i}=v_{i} z_{i}
$$

- The binomial ideal $I=$ toric-ideal(monomial map) is the ideal of polynomial invariants in the Fourier parameters.


## Solving the likelihood equations

$$
I \longrightarrow M_{I} \longrightarrow K=\operatorname{ker}\left(M_{I}\right) \longrightarrow I_{K, u} \longrightarrow J=\operatorname{sat}\left(I_{K, u}, \operatorname{slocus}(I)\right)
$$

- Kernel of a polynomial matrix:
- Linear algebra approach to compute kernel (HMM group).
- Smaller matrices: Enough codim $(I)$ equations to do computations.
- Direct computations on the Fourier parameters.
- Homotopy methods (PHC) to avoid kernel computation.
- Lower bounds for ML degree: Taking a subcollection of the rows of $M_{I}$.
- Upper bounds for ML degree:
- Degree of zero-dimensional $I_{K, u}$ before saturation,
- ML degree bounded by a sum of mixed volumes of Newton polytopes of the polynomial parameterization.

|  |  | d | ed | m | sd | sm | MLd |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $.$ | BS | 4 | 7 | 8 | 1 | 24 | 92 |
|  | JC | 3 | 4 | 3 | 1 | 3 | 23 |
|  | K2 | 6 | 9 | 12 | 3 | 22 |  |
|  | K3 | 9 | 15 | 96 |  |  |  |
| $.$ | BS | 2 | 2 | 1 | - | - | 1 |
|  | JC | 2 | 3 | 13 | 1 | 1 | 15 |
|  | K2 | 4 | 6 | 6 | 2 | 10 | 190 |
|  | K3 | 6 | 9 | 12 | 3 | 22 |  |
| $.$ | BS | 1 | 1 | 1 | - | - | 1 |
|  | JC | 1 | 2 | 3 | 0 | 2 | 7 |
|  | K2 | 2 | 3 | 3 | 1 | 1 | 15 |
|  | K3 | 3 | 4 | 3 | 1 | 3 | 40 |

## Trees with four leaves no molecular clock

|  |  | d | ed | m | sd | sm | MLd |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BS | 5 | 7 | 4 | 2 | 4 | 14 |
|  | JC | 5 | 14 |  |  |  |  |
|  | K2 | 10 |  |  |  |  |  |
|  | K3 | 15 | 63 |  |  |  |  |
|  | BS | 4 | 7 | 8 | 1 | 24 | 92 |
|  | JC | 4 |  |  |  |  |  |
|  | K2 | 8 |  |  |  |  |  |
|  | K3 | 12 |  |  |  |  |  |

## Trees with four leaves molecular clock

|  |  | d | ed | m | sd | sm | MLd |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\therefore$ | BS | 3 | 4 (7) | 2 | 1 | 1 | 1 |
|  | JC | 3 |  | 14 |  |  |  |
|  | K2 | 6 |  | 108 |  |  |  |
|  | K3 | 9 |  | 1619 |  |  |  |
| $\therefore$ | BS | 3 | 4 (7) | 2 | 1 | 1 | 9 |
|  | JC | 3 |  | 14 |  |  |  |
|  | K2 | 6 |  | 129 |  |  |  |
|  | K3 | 9 |  | 1619 |  |  |  |
| $\ldots$ | BS | 2 | 7 | 2 | 0 | 1 | 6 |
|  | JC | 2 |  | 11 |  |  |  |
|  | K2 | 4 |  | 45 |  |  |  |
|  | K3 | 6 |  | 227 |  |  |  |

## Trees with four leaves molecular clock

|  |  | d | ed | m | sd | sm | MLd |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\ldots$ | BS | 2 | 3 | 2 | 0 | 1 | 3 |
|  | JC | 2 |  | 5 |  |  |  |
|  | K2 | 4 |  | 18 |  |  |  |
|  | K3 | 6 |  | 80 |  |  |  |
| $\ldots$ | BS | 1 | 2 | 2 | 0 | 1 | 3 |
|  | JC | 1 |  | 4 | 0 | 2 |  |
|  | K2 | 2 |  | 8 |  |  |  |
|  | K3 | 3 |  | 16 |  |  |  |

