
AN INTRODUCTION TO SINGULAR

LUIS GARCIA-PUENTE

Introduction

This document introduces Singular, which is a free computer algebra system for poly-
nomial computations. You can download Singular at http://www.singular.uni-kl.de/.
Singular features one of the fastest implementations of Buchberger’s algorithm to compute
a Gröbner basis. It also provides multivariate polynomial factorization, resultants, gcd
computations, syzygy and free-resolution computations, symbolic-numeric root finding,
visualization, primary decomposition, resolution of singularities, and many more related
functionalities.

You cay run Singular either in shell mode by typing Singular in a terminal or by typing
ESingular, which runs Singular within Xemacs adding some point-and-click functionality.
Singular contains a C-like programming language that allows users to write their own
libraries and procedures to extend Singular’s capabilities.

1. First steps

Once Singular is started, it awaits an input after the prompt >. Every statement has to
be terminated by ;

2+2;

// 4

All objects have a type, for example integer variables are of type int. An assignment is
done by the symbol =, comparison is done by the symbols == and != (or <>), returning a
Boolean variable (0 or 1).

int i = 2;

i == 1;

// 0

i != 3;

// 1

The value of an object is displayed by typing its name

i;

// 2

The last displayed result is always available with the underscore symbol _. This is
particularly useful if you are doing a long interactive computation and you forgot to store
the result in a variable.

LIB "general.lib";

factorial(37);""; //37! of type string (as long integer)
1

2 LUIS GARCIA-PUENTE

ring r1 = 0,x,dp;

factorial(37,0); //37! of type number, computed in r1

number p = _;

p;

// 13763753091226345046315979581580902400000000

The previous example shows many Singular features which are worth describing. The
first line calls for a library called general.lib. Many Singular commands are stored in
libraries that you need to load in order to use them. The command factorial returns
a string if called with one argument. But once a ring is defined, it returns a number if
called with two arguments, a number is an element in the ground field (in this case Q).
This shows that a single procedure can have a different number of inputs and different
outputs as well. Furthermore, it exemplifies that most Singular objects need to be defined
within the context of a ring. Finally, text starting with // denotes a comment and is
ignored in calculations.

The best way to learn Singular is to read the online documentation either through
Singular’s web site or through the local copy included in the installation tarball. You can
access this local copy by typing help;. Explanation on a single topic, e.g., on intmat

which defines a matrix of integers, is obtained by

help intmat;

Integers (int), integer matrices (intmat), integer vectors (intvec), and strings (string)
can be defined without a ring being active. Integer matrices are defined as follows

intmat m[3][3] = 1,2,3,4,5,6,7,8,9;

This line defines a 3× 3-matrix of integers and initializes it with some values. A single
matrix entry may be selected and changed using square brackets [and].

m[1,2]=0;

m;

// 1,0,3,

// 4,5,6,

// 7,8,9

print(m); // notice that the command print makes the output look nicer.

// 1 0 3

// 4 5 6

// 7 8 9

To calculate the trace of this matrix, we use a for loop. The curly brackets { and }

denote the beginning and end of a block. If you define a variable without giving an initial
value, as the variable tr in the example below, Singular assigns a default value for the
specific type. In this case, the default value for integers is 0.

int tr;

for (int j=1; j <= 3; j++) { tr=tr + m[j,j]; }

tr;

// 15

Strings are delimited by " (double quotes). They may be used to comment the output
of a computation or to give it a nice format. If a string contains valid Singular commands,

AN INTRODUCTION TO SINGULAR 3

it can be executed using the function execute. The result is the same as if the commands
would have been written on the command line. This feature is especially useful to define
new rings inside procedures.

"example for strings:";

// example for strings:

string s="The element of m ";

s = s + "at position [2,3] is:"; // concatenation of strings by +

s , m[2,3] , ".";

// The element of m at position [2,3] is: 6 .

s="m[2,1]=0; m;";

execute(s);

// 1,0,3,

// 0,5,6,

// 7,8,9

This example shows that expressions can be separated by a , (comma) giving a list of
expressions. Singular evaluates each expression in this list and prints all results separated
by spaces.

You can plot curves and surfaces in Singular with the plot command in the library
surf.lib. So before we get to more technical stuff, lets create some pretty pictures.

LIB "surf.lib";

// plane curve

ring r0 = 0,(x1,x2),dp;

ideal I = x1^3 - x2^2;

plot(I);

// Singular Logo

ring r = 0,(x,y,z),dp;

poly logo = ((x+3)^3 + 2*(x+3)^2 - y^2)*(x^3 - y^2)*((x-3)^3-2*(x-3)^2-y^2);

plot(logo);

// Steiner surface

ideal J2 = x^2*y^2+x^2*z^2+y^2*z^2-17*x*y*z;

plot(J2);

// Whitney umbrella

plot(z^2-x^2*y);

2. Rings and Gröbner bases

To calculate with objects such as ideals, matrices, modules, and polynomial vectors, a
ring has to be defined first.

ring r = 0,(x,y,z),dp;

The definition of a ring consists of three parts: the first part determines the ground field,
the second part determines the names of the ring variables, and the third part determines
the monomial ordering to be used. The example above declares a polynomial ring called r

with a ground field of characteristic 0 (i.e., the rational numbers) and ring variables called

4 LUIS GARCIA-PUENTE

x, y, and z. The dp at the end means that the degree reverse lexicographical ordering
should be used.

Other ring declarations:

ring r1=32003,(x,y,z),dp;

// characteristic 32003, variables x, y, and z and ordering dp.

ring r2=32003,(a,b,c,d),lp;

// characteristic 32003, variables a, b, c, d and lexicographical ordering

For the complete list of monomial orderings see http://www.singular.uni-kl.de/

Manual/2-0-5/sing_364.htm

Typing the name of a ring prints its definition. The example below shows, that the
default ring in Singular is Z/32003[x,y,z] with degree reverse lexicographical ordering:

ring r5;

r5;

// characteristic : 32003

// number of vars : 3

// block 1 : ordering dp

// : names x y z

// block 2 : ordering C

Defining a ring makes it the current active ring (Singular assigns it the variable basering),
so each ring definition above switches to a new basering. The concept of rings in Singular
is discussed in detail in the Chapter “Rings and orderings” of the Singular manual.

The basering now is r5, to switch back to a different ring we need to use the function
setring:

setring r;

Once a ring is active, we can define polynomials. A monomial, say x3, may be entered
in two ways: either as x^3, or in short-hand notation as x3. Note, that the short-hand
notation is forbidden if the name of the ring variable consists of more than one character.
Note also that Singular always expands brackets and automatically sorts the terms with
respect to the monomial ordering of the basering.

poly f = x3+y3+(x-y)*x2y2+z2;

f;

// x3y2-x2y3+x3+y3+z2

The command size determines in general the number of “single entries” in an object.
In particular, for polynomials, size determines the number of monomials.

size(f);

// 5

A natural question is to ask if a point e.g. (x, y, z) = (1, 2, 0) lies on the variety defined
by the polynomials f and g. For this we define an ideal generated by both polynomials,
substitute the coordinates of the point for the ring variables, and check if the result is zero:

poly g = f^2 *(2x-y);

ideal I = f,g;

ideal J= subst(I,var(1),1);

AN INTRODUCTION TO SINGULAR 5

J = subst(J,var(2),2);

J = subst(J,var(3),0);

J;

// J[1]=5

// J[2]=0

Since the result is not zero, the point (1, 2, 0) does not lie on the variety V (f, g).
Another question is to decide whether some function vanishes on a variety, or in algebraic

terms if a polynomial is contained in a given ideal. For this we calculate a Gröbner basis
using the command groebner and afterwards reduce the polynomial with respect to this
Gröbner basis.

ideal sI = groebner(f);

reduce(g,sI);

// 0

As the result is 0 the polynomial g belongs to the ideal defined by f .
The function groebner, like many other functions in Singular, prints a protocol dur-

ing calculation, if desired. The command option(prot); enables protocoling whereas
option(noprot); turns it off. Another useful option for groebner is option(redSB)

which forces Singular to return a reduced Gröbner basis. In the Singular documentation,
Gröbner bases are referred to as standard bases. In fact, Singular provides also the com-
mand std to compute a standard basis. Below we will explain the difference between both
commands.

The command kbase calculates a basis of the polynomial ring modulo an ideal, if the
quotient ring is finite dimensional. As an example we calculate the Milnor number of a
hypersurface singularity in the global and local case. This is the vector space dimension of
the polynomial ring modulo the Jacobian ideal in the global case respectively of the power
series ring modulo the Jacobian ideal in the local case.

The Jacobian ideal is obtained with the command jacob.

ideal J = jacob(f);

// // ** redefining J **

J;

// J[1]=3x2y2-2xy3+3x2

// J[2]=2x3y-3x2y2+3y2

// J[3]=2z

Singular prints the line // ** redefining J **. This indicates that we have previously
defined a variable with name J of type ideal within the ring r (see above).

To obtain a representing set of the quotient vector space we first calculate a Gröbner
basis, then we apply the function kbase to this standard basis.

J = groebner(J);

ideal K = kbase(J);

K;

// K[1]=y4

// K[2]=xy3

// K[3]=y3

6 LUIS GARCIA-PUENTE

// K[4]=xy2

// K[5]=y2

// K[6]=x2y

// K[7]=xy

// K[8]=y

// K[9]=x3

// K[10]=x2

// K[11]=x

// K[12]=1

//

size(K);

// 12

The command size gives the desired vector space dimension. As in Singular the func-
tions may take the input directly from earlier calculations, the whole sequence of commands
may be written in one single statement.

size(kbase(groebner(jacob(f))));

// 12

When we are not interested in a basis of the quotient vector space, but only in the
resulting dimension we may even use the command vdim and write:

vdim(groebner(jacob(f)));

// 12

2.1. Gröbner bases for local orderings and multiplicities. The following is an ex-
ample of a ring with the so-called “negative degree reverse lexicographical” local monomial
ordering:

ring r=0,(x,y,z),ds; // ds is a local ordering

Define an ideal in this ring:

poly s1=x3-y*z;

poly s2=y3-x*z;

poly s3=z3-x*y;

ideal I=(s1,s2,s3);

A standard basis with respect to a local ordering is an analogue of a Gröbner basis for
global monomial orderings. One can use a standard basis to compute the multiplicity at
the origin:

ideal J=std(I);

mult(J);

// 11

This multiplicity is the number of elements in the basis of standard monomials for the
local quotient ring, which can be created as before:

ideal K = kbase(J);

K;

// K[1]=z4

// K[2]=z3

AN INTRODUCTION TO SINGULAR 7

// K[3]=z2

// K[4]=z

// K[5]=y3

// K[6]=y2

// K[7]=y

// K[8]=x3

// K[9]=x2

// K[10]=x

// K[11]=1

3. Solving systems of polynomial equations

Singular applies symbolic-numeric methods to find the solutions of a system of polyno-
mial equations. Even though the complexity of these methods is higher than the complexity
of purely numerical methods it is desirable in many cases, for example, to avoid troubles
near singularities or to solve systems involving parameters providing a simultaneous so-
lution for all parameter values. As a first example, we will solve the following system of
linear equations in x, y, z, and u with free parameters a, b, c, and d.

3x + y + z − u = a

13x + 8y + 6z − 7u = b

14x + 10y + 6z − 7u = c

7x + 4y + 3z − 3u = d

// define a ring with 4 parameters and 4 indeterminates

ring R = (0,a,b,c,d), (x,y,z,u), dp;

//

//the equations

//

ideal I = 3x + y + z - u - a,

13x + 8y + 6z - 7u - b,

14x + 10y + 6z - 7u - c,

7x + 4y + 3z - 3u - d;

//

// compute a reduced Groebner basis

//

option(redSB);

ideal G = groebner(I);

//

// return the generators of G as monic polynomials

//

simplify(G,1);

// _[1]=u+(6/5a+4/5b+1/5c-12/5d)

// _[2]=z+(16/5a-1/5b+6/5c-17/5d)

8 LUIS GARCIA-PUENTE

// _[3]=y+(3/5a+2/5b-2/5c-1/5d)

// _[4]=x+(-6/5a+1/5b-1/5c+2/5d)

So the unique solution to our system is

u = −(6/5a + 4/5b + 1/5c− 12/5d),

z = −(16/5a− 1/5b + 6/5c− 17/5d),

y = −(3/5a + 2/5b− 2/5c− 1/5d),

x = −(−6/5a + 1/5b− 1/5c + 2/5d).

The performance of Buchberger’s algorithm for computing Gröbner bases depends heav-
ily in the chosen term order. In general, lexicographic Gröbner bases are the most expensive
to compute. But if the ideal is zero-dimensional, that is, the system has a finite number
of solutions, we can use the FGLM algorithm to move from any Gröbner basis to a lexico-
graphic one.

LIB "ring.lib";

timer = 0;

//

ring R = 0, (x,y,z), dp;

ideal I = x7+y7, y7+z7, x7+z7+2, x6y+y6z+z6+x;

//

// compute reduced GB w.r.t. dp

//

option(redSB);

ideal J=std(I);

timer;

// 4

timer=0;

//

// define a new ring S by changing the term order of R

def S=changeord("lp");

setring S;

ideal J = fglm(R,J);

timer;

// 0

timer=0;

//

// the command groebner decides on the best method to compute a GB

// first we need to copy the original ideal I into the ring S

ideal I = imap(R,I);

ideal K = groebner(I);

timer;

// 4

timer=0;

AN INTRODUCTION TO SINGULAR 9

// finally the direct computation of a reduced lex Groebner basis

K = std(I);

// ...

The last computation takes a very long time so it is a good moment to point out that
one forces Singular to quit with ^C-^C.

3.1. Elimination of variables. Elimination of variables is a common way to solve systems
of polynomials. In Singular, one may either choose an appropriate ordering (for example,
a product ordering) or apply the command eliminate, which computes in the present
ordering modified by an extra weight vector.

Next, we will determine all the z-values of the zeros of the following system of equations

4z8y − 5z3x− 3x2y + xy2 = 8

z9 − 3z5xy + z3x− (7x2 + 1)y − 2xy2 = 1

z9x(5 + 2y) + 5z8y + 5z − x2y − 4xy2 = −1

// First we define a ring with a product ordering

// to eliminate the first 2 variables

ring R = 0, (x,y,z), (dp(2),lp);

ideal I = 4z8y-5z3x-3x2y+xy2-8,

z9-3z5xy+z3x-(7x2+1)*y-2xy2-1,

z9x*(5+2y)+5z8y+5z-x2y-4xy2+1;

option(redSB);

ideal J = groebner(I);

// find the univariate polynomial in z

simplify(lead(J),1);

// _[1]=z85

// _[2]=y

// _[3]=x

poly g = J[1];

We will next compute all the zeros of the univariate polynomial g. We will use Laguerre’s
algorithm in Singular implemented in the library solve.lib.

LIB "solve.lib";

// define a ring with complex coefficients to store the zeros

ring Rfloat = (complex,10,I), (x,y,z), lp;

poly g = imap(R,g);

list L = laguerre_solve(g,100,100);

size(L);

// 85

//

// to pick the real zeros we can loop thru L

for (int i=1; i<=size(L); i++)

10 LUIS GARCIA-PUENTE

{

if (impart(L[i])==0) {L[i];}

}

// -1.8135284651

// -1.559997662

// -0.2679041558

// 0.9657875564

// 1.1035140081

// 1.2770264747

// 2.7768083

As an exercise, implement a method to test that these points are indeed real zeros. We
could have found the roots of g without defining a new ring using the command solve in
the library solve.lib.

3.2. Primary decomposition. When solving a system of equations, it is important to
understand the geometry of the zero-set. An important step towards this goal is finding the
primary decomposition of the defining ideal. Singular provides different methods to find the
primary decomposition of an ideal. One can used several canned-algorithms implemented
in the library primdec.lib, or, in case those procedures fail to terminate, perform a
manually-guided primary decomposition computing ideal saturations with the command
sat included in the library elim.lib.

Singular also provides an efficient implementation (facstd) of the factorizing Gröbner
bases algorithm. This procedure returns a list of ideals whose intersection equals the radical
of the input ideal. It is important to note that the decomposition returned by facstd is
not a complete (irreducible) decomposition. It only splits the decomposition problem into
smaller problems.

The library primdec.lib contains two different algorithms to compute primary decom-
position: the Gianni-Trager-Zacharias algorithm and the Shimoyama-Yokoyama algorithm.
Below is a simple example on how to use this library.

LIB "primdec.lib";

ring R = 0, (x,y,z),dp;

ideal I = xy2-y3-xy+y2,

x2y-x3,

x3-y3-x2+y2;

primdecGTZ(I);

//[1]:

// [1]:

// _[1]=x-y

// [2]:

// _[1]=x-y

//[2]:

// [1]:

// _[1]=y-1

// _[2]=x2

AN INTRODUCTION TO SINGULAR 11

// [2]:

// _[1]=y-1

// _[2]=x

//[3]:

// [1]:

// _[1]=y

// _[2]=x2

// [2]:

// _[1]=y

// _[2]=x

Acknowledgments

This tutorial relies heavily on the introductory Singular tutorial available online, some
introductory notes written by Anton Leykin and the paper “Singular: A computer algebra
system” by Christoph Lossen.

Department of Mathematics, Texas A&M University, College Station, TX 77843-3368,
USA

E-mail address: lgp@math.tamu.edu
URL: http://www.math.tamu.edu/~lgp

