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Abstract

This paper is motivated by the theory of sequential dynamical systems (SDS), deve-

loped as a basis for a mathematical theory of computer simulation. A sequential dynam-

ical system is a collection of symmetric Boolean local update functions, with the update

order determined by a permutation of the Boolean variables. In this paper, the notion of

SDS is generalized to allow arbitrary functions over a general finite field, with the

update schedule given by an arbitrary word on the variables. The paper contains gener-

alizations of some of the known results about SDS with permutation update schedules.

In particular, an upper bound on the number of different SDS over words of a given

length is proved and open problems are discussed.
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1. Introduction

The theory of sequential dynamical systems (SDS) was introduced in [1–4]

as a way to formalize certain types of large-scale computer simulations. Such

a mathematical formalization is crucial in effective software verification and

can aid in simulation output analysis. The study of SDS, while motivated by
these applications, leads to a wide variety of mathematical problems of intrin-

sic interest, which combines several mathematical areas, ranging from dynam-

ical systems theory to combinatorics and algebra. This paper generalizes some

of the original SDS concepts and results.

Sequential dynamical systems, as defined in [1–4], incorporate the essential

features of interaction-based (also sometimes called agent-based) computer

simulations. Local variables v1, . . . ,vn take on binary states which evolve in dis-

crete time, based on a local update function f i attached to each variable vi, and
which depends on the states of certain other variables, encoded by the edges of

a dependency graph Y on the vertices v1, . . . ,vn. Finally, an update schedule pre-

scribes how these local update functions are to be composed in order to gener-

ate a global update function
f : f0; 1gn ! f0; 1gn

of the system. An important question, which can be answered in this setting, is

how many different systems one can generate simply by varying the update

schedule. The upper bound is given in terms of invariants of the dependency

graph Y.

In applications the dependency graph Y frequently varies over time, how-

ever. The need for a framework that allows for such a change inspired the

investigation of properties of tuples of ‘‘local’’ functions in [5] and certain

equivalence relations on them. That paper also contains a Galois correspon-
dence between sets of tuples of local functions and certain graphs. Tuples of

local functions can be interpreted as parallel update systems f : f0; 1gn !
f0; 1gn, so that the results pertain to the study of parallel update systems as

well. The present paper makes the connection between tuples of local functions

(parallel systems) and sequential systems, in particular SDS, explicit by exploit-

ing this Galois correspondence. In order to describe our main results, we need

to recall some definitions and results from Laubenbacher and Pareigis [5] in the

following section.
Then we focus on tuples (f 1, . . . ,f n) of functions f i : Kn ! K, with K a finite

field and consider systems f : Kn ! Kn which are obtained by composing

local functions from such an n-tuple f = (f 1, . . . ,f n). We show that, if t P 1 is

an integer and Wt is the set of all words in the integers 1, . . . ,n of length t,

allowing for repetitions, then we obtain an upper bound for the number of dif-

ferent systems f p : Kn ! Kn one can construct by forming



502 L.D. Garcia et al. / Appl. Math. Comput. 174 (2006) 500–510
f p ¼ f it � � � � � f i1 ;

where p = (i1, . . . ,it) ranges over all elements in Wt.

This upper bound generalizes one for SDS, derived in [6]. It suggests that a

part of the theory of SDS can be derived for systems that are SDS-‘‘like,’’ but

have fewer restrictions on the local functions. In particular, it is not necessary

to make the dependency graph an explicit part of the data defining an SDS. This
approach is explored further in [7], in which a more general notion of SDS is

introduced, and transformations of SDS are defined, forming a category with

interesting properties, that contains SDS as a subcategory. A transformation

between two SDS can be viewed as a simulation of one system by the other.
2. Parallel systems

Throughout this paperK denotes a finite field of order q andKn is the n-fold

cartesian product of K.

Definition 2.1. Let n be a positive integer, let d be a non-negative integer, and

let Y be a graph with vertex set {1, . . . ,n}.

(1) A function f : Kn ! Kn is d-local on Y if, for any 1 6 j 6 n, the jth coor-

dinate of the value of f on x 2 Kn depends only on the values of those coor-
dinates of x that have distance less than or equal to d from vertex j 2 Y. In

other words, if f(x) = (f1(x), . . . ,fn(x)), then fj : K
n ! K depends only on

those coordinates that have distance less than or equal to d from j.

(2) For 1 6 d < n and 1 6 j 6 n, let Lj
dðY Þ be the set of all functions

f : Kn ! Kn such that

f ðx1; . . . ; xnÞ ¼ ðx1; . . . ; xj�1; fjðxÞ; xjþ1; . . . ; xnÞ
and fj : K

n ! K depends only on the values of those coordinates of x
which have distance at most d from j in Y. Hence Lj

dðY Þ consists of d-local
functions on Kn, which are the identity on all but possibly the jth

coordinate.

(3) For d = n, define Lj
nðY Þ to be the set of all functions on Kn, which are the

identity on all but possibly the jth coordinate. Observe that if Y is con-

nected, then this definition of Lj
nðY Þ directly extends the definition in (2).

Observe that Lj
0ðY Þ ¼ Lj

0 does not depend on the graph Y and, if Y is con-

nected, neither does Lj
nðY Þ. Furthermore, Lj

0 is isomorphic to MapðK;KÞ ¼
ff : K ! Kg. For K ¼ f0; 1g, the set Lj

0 contains all four possible functions,

namely the identity on K, the two projections to one element in K, and the

inversion.
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In this paper we study the set

L1
n � � � � � Ln

n ¼ fðf 1; . . . ; f nÞjf i 2 Li
ng;

that is, the set of n-tuples of functions f i : Kn ! Kn which only change the ith

coordinate. To be precise, f iðxÞ ¼ ðx1; . . . ; xi�1; f i
i ðxÞ; xiþ1; . . . ; xnÞ, with arbi-

trary functions f i
i : K

n ! K. We denote by F the power set of this set without

the empty set. The following theorem is one of the main results in [5].

Theorem 2.2. There is a Galois correspondence between F and the set G of

subgraphs of the complete graph Kn on the vertex set {1, . . . ,n}.

For the convenience of the reader we recall the construction of this Galois

correspondence. Let F 2 F. Define a subgraph U(F) of the complete graph Kn

as follows. First construct the set eF of all n-tuples ef ¼ ðff 1 ; . . . ;ff nÞ, which
either are in F or arise from an element in F by replacing one of the coordinates

by a 0-local function, that is, by a function from Li
0 for some i. Now define the

graph U(F ) as follows. An edge (i, j) of Kn is in U(F) if and only ifef i � ef j ¼ ef j � ef i for all ef ¼ ðff 1 ; . . . ;ff nÞ 2 eF .
Conversely, let G � Kn be a subgraph. We define a set W(G) of n-tuples of

functions on Kn by

WðGÞ ¼ L1
1ðGÞ � L2

1ðGÞ � � � � � Ln
1ðGÞ;

where G is the complement of G in Kn. Then U and W together form the desired
Galois correspondence.

In particular, if F 2 F consists of one element f = (f 1, . . . ,f n), then the graph

U({f}) = U(f) encodes the dependency relations among the local functions f i.

Conversely, for a subgraph G � Kn, the set W(G) contains all n-tuples of local

functions whose dependency relations are modeled by G. The graph U(f) is an
essential part of the definition of an SDS, as in [1–4]. In the following section,

we give an algebraic criterion for the computation of U(f), based on the fact

that any local function f i
i can be presented uniquely as a polynomial.
3. Computation of the dependency graph U

In this section, we give a method for computing the graph U(f) for an n-tuple

of local functions f. It relies on the fact that any local function g : Kn ! K can

be represented uniquely as a polynomial h on n variables [8]. Suppose jKj ¼ q
and let h : Kn ! K be the polynomial defined by

hðx1; . . . ; xnÞ ¼
X

ðc1;...;cnÞ2Kn

gðc1; . . . ; cnÞ
Yn
i¼1

ð1� ðxi � ciÞq�1Þ
" #

.
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It is easy to see that h(c1, . . . ,cn) = g(c1, . . . ,cn) for all ðc1; . . . ; cnÞ 2 Kn. There-

fore, any function in Lj
n can be written uniquely as an n-tuple of polynomials

in n variables x1, . . . ,xn.
Let f ¼ ðf 1; . . . ; f nÞ : Kn ! Kn be an element of L1

n � � � � � Ln
n and let U(f)

be its associated graph. The following result gives an important characteriza-

tion of U(f) in terms of the polynomial representation of the entries of f.

Proposition 3.1. There is an edge between vertex i and vertex j in U(f) if and only
if xi does not appear in f j

j and xj does not appear in f i
i .
Proof. Suppose first that xi does not appear in f j
j and xj does not appear in f i

i .

It is clear that then f i and f j commute. Now consider an ef which is obtained

from f by replacing the jth coordinate by a 0-local function ef j
. It also does not

depend on xi. Similarly, no ef i depends on xj. Thus, ef j � ef i ¼ ef i � ef j for allef ¼ ðff 1 ; . . . ;ff nÞ obtained from f by replacing one of the coordinates by a 0-

local function. Hence the edge (i, j) is in the graph U(f).
Conversely, suppose that xi divides a monomial of f j

j or xj divides a

monomial of f i
i . Without loss of generality, suppose xi divides a monomial of

f j
j . Let M ¼ fm1; . . . ;mtg be the set of all monomials of f j

j such that xi|ml for

all l = 1, . . . ,t. Let ms be a monomial in M of minimal degree, say ms ¼
xt1s1x

t2
s2 � � � x

tr
sr , where xi 2 fxs1 ; . . . ; xsrg � fx1; . . . ; xng. Define a ¼ ða1; . . . ; anÞ 2

Kn by setting, for 1 6 l 6 n,

al ¼
1 if l 2 fs1; . . . ; srg;
0; otherwise.

�
Then the jth coordinate of f j(a) is equal to

f j
j ðaÞ ¼ ðm1 þ � � � þ mtÞðaÞ ¼ msðaÞ ¼ 1.

Let ef i be the 0-local function, projection to zero, in the ith coordinate. The jth

coordinate of ef i � f jðaÞ is equal toef i � f jðaÞ
� �

j
¼ f j

j ðaÞ ¼ 1.

On the other hand, ef iðaÞ ¼ ða1; . . . ; ai�1; 0; aiþ1; . . . ; anÞ. So the jth coordinate

of f j � ef iðaÞ is

f j � ef iðaÞ
� �

j
¼ f j

j ða1; . . . ; ai�1; 0; aiþ1; . . . ; anÞ

¼ ðm1 þ � � � þ mtÞða1; . . . ; ai�1; 0; aiþ1; . . . ; anÞ ¼ 0.

Thus ð ef i � f jðaÞÞj 6¼ ðf j � ef iðaÞÞj. Therefore, ef i � f j 6¼ f j � ef i , and hence there
cannot be an edge between vertices i,j in U(f). h
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This proposition provides an easy algorithm to compute U(f) for any f, or,

more generally, any set of such functions. (A C++ implementation is available

from the authors.)
4. Sequential systems over words

In many cases, it is necessary to study systems that are updated asynchro-

nously rather than in parallel. So it is important to study systems

f : Kn ! Kn obtained by composing the local functions of an n-tuple accord-

ing to some prescribed update schedule, rather than the tuple itself. A theoret-

ical question which has important practical consequences is how many different

systems one can obtain by simply varying the update schedule of the variables,

that is, by composing the local functions in a different order. In this section, we
derive an upper bound for this number.

Definition 4.1. Let f ¼ ðf 1; . . . ; f nÞ : Kn ! Kn, and let Wt be the set of all

words on {1, . . . ,n} of length t, for some t P 1, allowing for repetitions. For

p = (i1, . . . ,it) 2Wt, we denote by fp the finite dynamical system given by

f it � � � � � f i1 : Kn ! Kn.

Let F W tðf Þ ¼ ff pjp 2 W tg, the collection of all systems Kn ! Kn that can be

obtained by composing the coordinate functions of f in all possible ways, using

up to t of them.

We now define an equivalence relation on Wt.

Definition 4.2. Let G be a graph on the n vertices 1, . . . ,n. Let �G be the

equivalence relation on Wt generated by the following relation. Let
p = (i1, . . . ,it) 2Wt. For 1 6 s < t, if is = is+1 or there is no edge between is
and is+1 in G, then

p�Gp
0;

where p 0 = (i1, . . . ,is+1, is, is+2, . . . ,it).
Remark 4.3. If f ¼ ðf 1; . . . ; f nÞ : Kn ! Kn is such that U(f) = G, and p�Gp
0,

then

f it � � � � � f is � f isþ1 � � � � � f 1 ¼ f it � � � � � f isþ1 � f is � � � � � f 1.

We now derive an upper bound on the size of the set F W tðf Þ, that is, on the
number of different systems one obtains by composing the coordinate functions

of f in all possible orders, with up to t of them at a time.
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Definition 4.4. Let f ¼ ðf 1; . . . ; f nÞ : Kn ! Kn, and let G(f) = G = U(f). Let
p = (i1, . . . ,it) 2Wt. Let Hp(f) = Hp be the graph on t vertices v1, . . . ,vt,
corresponding to i1, . . . ,it (with va 5 vb even in the case that ia = ib), with an

edge between va and vb if and only if the following two conditions hold:

(1) ia 5 ib,
(2) the edge (ia, ib) is not in G.
Remark 4.5. Observe that if p 2 Sn, that is, t = n and p contains no repetitions,
then Hp ¼ G.

Let Acyc(H) be the set of all acyclic orientations of a graph H. Given p =

(i1, . . . ,it) 2Wt, we construct an acyclic orientation of Hp by orienting an edge

(vi,vj) toward the vertex whose label occurs first in p. If all entries of p are distinct,
then this clearly produces an acyclic orientation. But even if an entry is repeated

we cannot produce an oriented cycle, since there is no edge between the vertices

corresponding to the repetitions. Denote this acyclic orientation by Opðf Þ.

Lemma 4.6. If p�Gp
0, then Hp(f) = Hp0(f) and Opðf Þ ¼ Op0ðf Þ.
Proof. If p�Gp
0, then they differ by a sequence of transpositions of adjacent

letters, which are either equal, or for which the corresponding vertices in G

are connected by an edge. Hence Hp(f ) and Hp0(f ) have the same vertex set.

Furthermore, an edge (a,b) is inHp(f ) if and only if ia 5 ib and (ia, ib) is an edge

in G; similarly for Hp0(f ). Observe that the transposition in p of adjacent letters
which are connected by an edge in G does not change the resulting acyclic ori-

entation, because, by construction, the vertices va and vb are not connected by

an edge in Hp(f ). Hence the proof of the lemma is complete. h

The next proposition is a generalization of a result from Cartier–Foata nor-
mal form theory. See, e.g., [9,6].

Proposition 4.7. Let f be a system and G = U(f ). There is a one-to-one

correspondence

wG : W t=�G ! fAcycðHpðf ÞÞjp 2 W tg.
Proof. We assign to a word p 2Wt the associated acyclic orientation Opðf Þ on
Hp(f). By Lemma 4.6 this induces a mapping wG on W t=�G. There is an obvi-

ous inverse mapping, assigning to an acyclic orientation on Hp the correspond-

ing p 0, equivalent to p, such that ia appears before ib in p 0 if there is an edge

(a,b) in Hp(f), oriented from a to b. h
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Example 4.8. We illustrate this correspondence with the following example.

Let G be a 4-cycle with vertices 1, . . . ,4, and let p = (1,2,1,3). Then Hp has

the four vertices 1,11,2,3, where 11 represents the vertex corresponding to

the second 1 in p. There is an edge 3 ! 1, which becomes oriented toward 1

in the acyclic orientation Op.

The following theorem provides an upper bound on the number of different

systems f p : Kn ! Kn one can obtain from composing the coordinate functions

of an n-tuple f = (f 1, . . . ,f n), up to t of them at a time.

Theorem 4.9. Let f = (f 1, . . . ,f n) be a system of local functions on Kn, and let
F W tðf Þ ¼ ff pjp 2 W tg. Then

jF W tðf Þj 6 jfAcycðHpðf ÞÞjp 2 W tgj ¼
X
p2W t

jfAcycðHpðf ÞÞgj.
Proof. By Proposition 4.7, jW t=�Gj ¼ jfAcycðHpðf ÞÞ : p 2 W tgj. But we have
seen that if p�Gp

0 then f p = f p 0
. Hence

jF W tðf Þj 6 jW t=�Gj ¼ jfAcycðHpðf ÞÞ : p 2 W tgj. �

The following example shows that the upper bound in the theorem is not

attained in general.
Example 4.10. Let f ¼ ðx2x3; x1x3; 0Þ : K3 ! K3. Then U(f) does not contain
any edges. Let p = (3,2,1), p 0 = (3,1,2). Then p¿ Gp

0. However,

f p ¼ f 1 � f 2 � f 3 ¼ 0 ¼ f 2 � f 1 � f 3 ¼ f p0 .
Corollary 4.11. If p 2 Sn, then Hpðf Þ ¼ G and hence fAcycðHpðf ÞÞ : p 2 Sng ¼
fAcycðGÞg. Thus, in this case, we recover the upper bound for the number of

different SDS obtained in [2].

If we restrict ourselves to SDS, this bound is known to be sharp [6]. For gen-

eral systems, however, it is not sharp, since the number of all possible systems

on Kn is bounded above by qnq
n
, but one can always find a word p on n letters

long enough, such that jAcycðHpÞj > qnq
n
.

Open Problem 1. Let f = (f1, . . . ,fn) be a system of local functions onKn, letWt

be the set of all words of length t on n letters, and let F W tðf Þ ¼ ff pjp 2 W tg.
Find a sharp upper bound for jF W tðf Þj.

In [4,10], an upper bound for dynamically non-equivalent SDS is given. In

general, two maps f ; g : Kn ! Kn are dynamically equivalent if there exists a

bijection u : Kn ! Kn such that
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g ¼ u � f � u�1.

In this case, we write, f � g. The upper bound in [4,10] relies on the fact that

conjugacy yields an SDS with the same graph and local functions. This is not

true for the general systems discussed in this paper as the following example

shows. Thus, this upper bound holds exactly for the class of SDS.

Example 4.12. Let f ¼ ð0; x3; x2Þ : K3 ! K3. Then U(f ) is the graph on three

vertices 1,2,3 with edges (1,2),(1,3). Hence there are only two functionally non-

equivalent systems which correspond to the permutations id = (123) and (321),

that is, the systems f 3 � f 2 � f 1 and f 1 � f 2 � f 3. These two systems have the

state spaces in Fig. 1. Nevertheless, if we let u = (213), then the system

u � f id � u�1 has the state space in Fig. 2. As expected, this state space is

isomorphic to the state space of f id but it is not equal to any of the two possible
state spaces given in Fig. 1. In fact, it is not equal to the state space of any

system obtained by composing the functions f 1, f 2, f 3 according to any word.

This is easily seen because, for example, the state (1,0,1) is sent to itself, but f 1

is the zero function. So f 1 cannot be involved. On the other hand, the first

coordinate of other states changes, so there must be a function involved that

changes the first coordinate.
Open Problem 2. Let f = (f 1, . . . ,f n) be a system of local functions on Kn, Wt

be the set of all words of length t on n letters, and let F W tðf Þ ¼ ff pjp 2 W tg.
Find a sharp upper bound for jF W tðf Þ= � j.
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5. Discussion

The approach to the study of finite systems taken in this paper was origi-

nated in [5], motivated by the desire to better understand sequential dynamical

systems.

Recall that an SDS f : Kn ! Kn is given by a graph Y with n vertices, func-
tions f i : Kn ! Kn, which change only the ith coordinate and take as input

those coordinates connected to vi in the graph Y. These functions are then com-

posed according to an update schedule given by a permutation p 2 Sn. That is,

f ¼ f pðnÞ � � � � � f pð1Þ.

The functions f i are required to be symmetric in their inputs, that is, permuting

the inputs does not change the value of the function.

In this paper, we study n-tuples of functions f i : Kn ! Kn, which change

only the ith coordinate, without any further restrictions. In particular, we do

not suppose the a priori existence of a graph Y, that governs the dependencies

among these functions. The Galois correspondence W, constructed in [5], pro-
vides such a graph when needed. And, as for SDS, it is the invariants of this

graph that determine many properties of the n-tuple and finite systems derived

from it. It shows that even for SDS it is not necessary to explicitly include the

dependency graph Y in the data defining an SDS. The Galois correspondence

also shows that in general there will be more than one system whose depen-

dency relations are modeled by a given graph.

An important theoretical result, proved in [6], gives a sharp upper bound

on the number of different SDS that can be obtained by varying the update
schedule over all of Sn. The proof of this result assumes that all vertices of Y

that have the same degree also have the same local function attached to them.

Theorem 4.9 generalizes this upper bound by removing the restrictions on the

local functions f i and on the graph Y. More importantly, it removes the restric-

tion that the update schedule be given by a permutation. Thus, the upper

bound holds for compositions of the coordinate functions, which allows for

repetitions of the functions, and does not require that all functions are actually

used.
These generalizations suggest that a more relaxed definition of SDS can still

lead to a class of systems about which one can prove theorems like the above

upper bound. Such a definition is proposed in [7], where a category of more

general SDS is developed.
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