

Minimal Cohen–Macaulay Deformations of Matroid Ideals

Luis David Garcia-Puente

lgpuente@msri.org

Mathematical Sciences Research Institute

- Let $M = \langle m_1, m_2, \dots, m_r \rangle$ be a monomial ideal in $S = S = \mathbf{k}[x_1, x_2, \dots, x_n].$
- **J** Let X be a finite regular CW-complex with r vertices.
- Label each vertex of X by the generators of M, and each face of X by the lcm of the labels of its vertices.
- **Fix an orientation on** X.

● The Cellular complex \mathbb{F}_X supported on X is the complex of \mathbb{Z}^n -graded modules

$$\mathbb{F}_X = \bigoplus_{F \in X} S[-\mathbf{a}_F],$$
$$\partial(F) = \sum_{\text{facets } G \text{ of } F} \operatorname{sign}(G, F) \frac{\mathbf{x}^{\mathbf{a}_F}}{\mathbf{x}^{\mathbf{a}_G}} G$$

- Let $M = \langle a^2b, ac, b^2, bc^2 \rangle$ be an ideal in $S = \mathbf{k}[a, b, c]$.
- **J** Let X be the finite regular **CW-complex**:

- Let $M = \langle a^2b, ac, b^2, bc^2 \rangle$ be an ideal in $S = \mathbf{k}[a, b, c]$.
- **J** Let X be the finite regular CW-complex:

■ Let \mathbb{F}_X be the complex of \mathbb{Z}^n -graded free S-modules

$$\begin{array}{l} 0 \to S[-(2,2,1)] \oplus S[-(1,2,2)] \xrightarrow{\partial_2} S[-(2,1,1)] \oplus S[-(2,2,0)] \oplus \\ \\ S[-(1,2,1)] \oplus S[-(1,1,2)] \oplus S[-(0,2,2)] \xrightarrow{\partial_1} S[-(2,1,0)] \oplus \\ \\ S[-(1,0,1)] \oplus S[-(0,1,2)] \oplus S[-(0,2,0)] \xrightarrow{\partial_0} S \end{array}$$

 \checkmark The differential ∂ acts on basis vectors

$$\partial(a^2b^2c) = -b \cdot a^2bc + c \cdot a^2b^2 - a \cdot ab^2c$$

Observe $\partial_0 = \begin{bmatrix} a^2b & ac & bc^2 & b^2 \end{bmatrix}$. Thus $\operatorname{Coker}(\partial_0) = S/M$.

For $\mathbf{b} \in \mathbb{N}^n$, let $X_{\leq \mathbf{b}}$ be the subcomplex of X consisting of all faces whose degrees are coordinatewise at most \mathbf{b} .

Theorem. \mathbb{F}_X is exact if and only if $X_{\leq \mathbf{b}}$ is acyclic over \mathbf{k} for all $\mathbf{b} \in \mathbb{N}^n$.

For $\mathbf{b} \in \mathbb{N}^n$, let $X_{\leq \mathbf{b}}$ be the subcomplex of X consisting of all faces whose degrees are coordinatewise at most \mathbf{b} .

Theorem. \mathbb{F}_X is exact if and only if $X_{\preceq \mathbf{b}}$ is acyclic over \mathbf{k} for all $\mathbf{b} \in \mathbb{N}^n$. **Example.** Let $\mathbf{b} = (1, 1, 2)$, then $X_{\preceq \mathbf{b}}$ is the subcomplex $\overset{ac}{\bullet} \overset{abc^2}{\bullet} \overset{bc^2}{\bullet}$

 $(\mathbb{F}_X)_{\mathbf{b}}$ equals the reduced chain complex

$$\widetilde{C}(X_{\preceq \mathbf{b}}; \mathbf{k}) = 0 \to \mathbf{k} \to \mathbf{k}^2 \to \mathbf{k}$$

 $I = X_{\prec b}$ is contractible, so it has no reduced homology.

- Let \mathcal{M} be a matroid on the set $\{1, \ldots, n\}$, and let L be its lattice of flats.
- For every proper flat $F \in L$ let $m_x(F) = \prod_{i:i \notin F} x_i$.
- \blacksquare The matroid ideal M is the monomial ideal

 $M = \langle m_x(F) \mid F \text{ is a proper flat} \rangle$

- Let \mathcal{M} be a matroid on the set $\{1, \ldots, n\}$, and let L be its lattice of flats.
- For every proper flat $F \in L$ let $m_x(F) = \prod_{i:i \notin F} x_i$.
- \blacksquare The matroid ideal M is the monomial ideal

 $M = \langle m_x(F) \mid F \text{ is a proper flat} \rangle$

A square–free monomial ideal M is a matroid ideal if and only if M is the Stanley–Reisner ideal of a matroid complex.

- Let \mathcal{M} be a matroid on the set $\{1, \ldots, n\}$, and let L be its lattice of flats.
- For every proper flat $F \in L$ let $m_x(F) = \prod_{i:i \notin F} x_i$.
- \blacksquare The matroid ideal M is the monomial ideal

 $M = \langle m_x(F) \mid F \text{ is a proper flat} \rangle$

- A square—free monomial ideal M is a matroid ideal if and only if M is the Stanley–Reisner ideal of a matroid complex.
- A square—free monomial ideal *M* is a matroid ideal if and only if for every pair of monomials $m_1, m_2 \in M$ and any $i \in \{1, ..., n\}$ such that x_i divides both m_1 and m_2 , the monomial $lcm(m_1, m_2)/x_i$ is in *M* as well.

$$M = \langle x_1 x_2, x_1 x_3 x_4, x_1 x_3 x_5, x_2 x_3 x_4, x_2 x_3 x_5, x_4 x_5 \rangle.$$

- ▶ Let $\mathcal{A} = \{H_1, \ldots, H_n\}$ be an affine ℓ -arrangement.
- The affine matroid $\Gamma_{\mathcal{A}}$ on $\{1, \ldots, n\}$ is the set of all subsets $S \subset [n]$ such that $S \cup \{0\}$ is a cocircuit of the matroid associated to the cone $c\mathcal{A}$.
- The affine matroid ideal $M_{\mathcal{A}}$ is generated by the monomials $m_C = x_{i_1} x_{i_2} \cdots x_{i_t}$, where $C = \{i_1, \ldots, i_t\} \in \Gamma_{\mathcal{A}}$.
- If H_0 is in general position relative to \mathcal{A} (\mathcal{A} is transverse to the hyperplane at infinity) then $M_{\mathcal{A}}$ is a matroid ideal.
- The ideal $M_{\mathcal{A}}$ is minimally generated by the monomials $m_x(v) = \prod_{v \notin H_i} x_i$, where v ranges over the vertices of \mathcal{A} .

Theorem. Let $B_{\mathcal{A}}$ be the bounded complex of \mathcal{A} . Then its cellular complex $C_{\bullet}(B_{\mathcal{A}}, M_{\mathcal{A}})$ gives a minimal free resolution for $M_{\mathcal{A}}$.

Let \mathcal{A} be the 2-arrangement

J The bounded complex $B_{\mathcal{A}}$ resolves $S/M_{\mathcal{A}}$ minimally.

Let \mathcal{A} be the 2-arrangement

- **J** The bounded complex $B_{\mathcal{A}}$ resolves $S/M_{\mathcal{A}}$ minimally.
- Hence $0 \longrightarrow S^4 \longrightarrow S^9 \longrightarrow S^6 \longrightarrow S$ is a minimal free resolution for S/M_A .

- We say that a monomial m' strictly divides m if $\operatorname{supp}(\frac{m}{m'}) = \operatorname{supp}(m)$.
- A monomial ideal $M = \langle m_1, \ldots, m_r \rangle$ is called generic if, whenever two distinct minimal generators m_i and m_j have the same positive degree in some variable x_s , there is a third generator m_l which strictly divides $lcm(m_i, m_j)$.

Example. $M = \langle x^2y^2, x^2z^2, yz \rangle$ is generic.

- We say that a monomial m' strictly divides m if $\operatorname{supp}(\frac{m}{m'}) = \operatorname{supp}(m)$.
- A monomial ideal $M = \langle m_1, \ldots, m_r \rangle$ is called generic if, whenever two distinct minimal generators m_i and m_j have the same positive degree in some variable x_s , there is a third generator m_l which strictly divides $lcm(m_i, m_j)$.

Example. $M = \langle x^2y^2, x^2z^2, yz \rangle$ is generic.

- For $\sigma \subseteq \{1, \ldots, r\}$, let $m_{\sigma} = \operatorname{lcm}(m_i, i \in \sigma)$.
- **J** The Scarf complex of M consists of the following subsets:

$$\Delta_M := \{ \sigma \subseteq \{1, \ldots, r\} \mid m_\sigma \neq m_\tau \; \forall \, \tau \in [r], \tau \neq \sigma \}.$$

Theorem. For M generic, the cellular complex \mathbb{F}_{Δ_M} is a minimal free resolution of S/M.

J The minimal free resolution of S/M is

$$0 \to S^2 \to S^5 \to S^4 \to S$$

- ✓ Let $M = \langle m_1, m_2, \ldots, m_r \rangle$ be a square—free monomial ideal. A deformation of M is a monomial ideal $M^* = \langle m_1^*, m_2^*, \ldots, m_r^* \rangle$, such that, for all $i \in [r]$, $\operatorname{supp}(m_i^*) = \operatorname{supp}(m_i)$.
- Denote by Δ_{M^*} the Scarf complex of a generic monomial ideal M^* . Then, $\mathbb{F}_{\Delta_{M^*}}$ is a resolution of S/M after relabeling the vertices of Δ_{M^*} with the generators of M.
- Every matroid ideal M is Cohen–Macaulay. But M^* is not necessarily Cohen–Macaulay even if M^* is a generic deformation.

- ✓ Let $M = \langle m_1, m_2, \ldots, m_r \rangle$ be a square—free monomial ideal. A deformation of M is a monomial ideal $M^* = \langle m_1^*, m_2^*, \ldots, m_r^* \rangle$, such that, for all $i \in [r]$, $\operatorname{supp}(m_i^*) = \operatorname{supp}(m_i)$.
- Denote by Δ_{M^*} the Scarf complex of a generic monomial ideal M^* . Then, $\mathbb{F}_{\Delta_{M^*}}$ is a resolution of S/M after relabeling the vertices of Δ_{M^*} with the generators of M.
- Every matroid ideal M is Cohen–Macaulay. But M^* is not necessarily Cohen–Macaulay even if M^* is a generic deformation.

Theorem. Let $M_{\mathcal{A}}$ be a matroid ideal associated to an affine ℓ -arrangement \mathcal{A} . Let $M_{\mathcal{A}}^*$ be a generic deformation. Then $\dim(B_{\mathcal{A}}) = \dim(\Delta_{M_{\mathcal{A}}^*})$ if and only if $M_{\mathcal{A}}^*$ is Cohen-Macaulay.

Matroid ideals always have Cohen–Macaulay generic deformations.

 $M = \langle x_1 x_2, x_1 x_3 x_4, x_2 x_3 x_4, x_1 x_3 x_5, x_2 x_3 x_5, x_4 x_5 \rangle$

Fix the order 1, 2, 3, 4, 5 in the indeterminates of S. Then

$$M^{\mathcal{A}} = \langle x_1 x_2, x_1^2 x_3^2 x_4^2, x_2^2 x_3^2 x_4^2, x_1^3 x_3^3 x_5^3, x_2^3 x_3^3 x_5^3, x_4^3 x_5^3 \rangle$$

is a CM generic deformation of ${\cal M}.$

 $\Delta_{M^{\mathcal{A}}} \text{ has facets } \{1, 2, 4\}, \{1, 3, 5\}, \{1, 2, 6\}, \{1, 3, 6\}$

Fix the order 1, 3, 4, 2, 5**. Then**

$$M^{\mathcal{A}} = \langle x_1 x_3 x_4, x_1^2 x_2^2, x_2^2 x_3^2 x_4^2, x_1^3 x_3^3 x_5^3, x_2^3 x_3^3 x_5^3, x_4^3 x_5^3 \rangle$$

is the CM generic deformation of M associated to the given order.

 $\Delta_{M^{\mathcal{A}}} \text{ has facets } \{1, 2, 4\}, \{1, 2, 5\}, \{1, 3, 5\}, \{1, 2, 6\}, \{1, 3, 6\}$

$$\ \ \, {\mathbb F}_{\Delta_{M^{\mathcal A}}} \text{ is equal to } 0 \longrightarrow S^5 \longrightarrow S^{10} \longrightarrow S^6 \longrightarrow S \\$$

Theorem. Let \mathcal{A} be an affine ℓ -arrangement transverse to the hyperplane at infinity. Then, there exists a Cohen-Macaulay generic deformation of the matroid ideal $M_{\mathcal{A}}$ that gives a minimal free resolution of $S/M_{\mathcal{A}}$ if (and only if) the arrangement \mathcal{A} is supersolvable.