

Algebraic Geometry of Bayesian Networks

Luis David Garcia, Michael Stillman, and Bernd Sturmfels

lgarcia@math.vt.edu

Virginia Tech.

- Let G be a directed acyclic graph with n nodes.
- ullet The nodes represent random variables, denoted X_1, \ldots, X_n . The arrows represent causal dependencies among the variables.

- $p(u_1, u_2, u_3, u_4) = p(u_4)p(u_3|u_4)p(u_2|u_3, u_4)p(u_1|u_2, u_3, u_4)$
- The joint probability distribution is defined as: $p(X_1 = u_1, X_2 = u_2, ..., X_n = u_n) = \prod_{i=1}^n p(u_i | pa(u_i))$
- $p(u_1, u_2, u_3, u_4) = p(u_4)p(u_3|u_4)p(u_2|u_3)p(u_1|u_3)$

Find all distributions ${\cal P}$ that admit a recursive factorization according to ${\cal G}$

Conditional Independence Relations

■ The set of directed local Markov relations of G is the set of independence statements

$$local(G) = \{X_i \perp \operatorname{Ind}(X_i) \mid \operatorname{pa}(X_i) : i = 1, 2, \dots, n\},\$$

■ The set of directed global Markov relations, global(G), is the set of independent statements $A \perp\!\!\!\perp B \mid C$, for any triple A, B, C of disjoint subsets of vertices of G such that A and B are d-separated by C.

$$local(G) = \{X_1 \perp \downarrow \{X_2, X_4\} \mid X_3, X_2 \perp \downarrow \{X_1, X_4\} \mid X_3\}$$
$$global(G) = local(G) \cup \{X_4 \perp \downarrow \{X_1, X_2\} \mid X_3\}$$

Find all distributions P that satisfy a set of conditional independence relations obtained from G.

Ideals, Varieties, and Independent Statements

- Let X_1, \ldots, X_n be discrete random variables, where X_i takes values in $[d_i] = \{1, 2, \ldots, d_i\}$.
- Let \mathbb{R}^D denote the real vector space of n-dimensional tables of format $d_1 \times \cdots \times d_n$.
- Let $p_{u_1u_2\cdots u_n}$ be an indeterminate representing $p(X_1=u_1,\,X_2=u_2,\ldots,X_n=u_n)$. Let $\mathbb{R}[D]$ be the ring generated by these indeterminates.
- Let X_1, X_2, X_3, X_4, X_5 be binary variables
- Let $I_{X_1 \perp \perp \{X_2, X_4\} \mid X_3}$ denote the ideal of $\mathbb{R}[D]$ generated by the 2×2 -minors of the matrices.

$$\begin{pmatrix} p_{11k1+} & p_{11k2+} & p_{12k1+} & p_{12k2+} \\ p_{21k1+} & p_{21k2+} & p_{22k1+} & p_{22k2+} \end{pmatrix}$$

 $p_{u_1u_2u_3u_4+} = p_{u_1u_2u_3u_41} + p_{u_1u_2u_3u_42}$

ullet Let \mathcal{M} be the independence model

$$\mathcal{M} = \{A^{(1)} \bot B^{(1)} \mid C^{(1)}, \dots, A^{(m)} \bot B^{(m)} \mid C^{(m)}\}. \text{ Then}$$

$$I_{\mathcal{M}} = I_{A^{(1)} \bot L B^{(1)} \mid C^{(1)}} + \dots + I_{A^{(m)} \bot L B^{(m)} \mid C^{(m)}}$$

- $V(I_{\mathcal{M}}) \subset \mathbb{C}^D$ is the set of all $d_1 \times \cdots \times d_n$ -tables with complex number entries which satisfy the conditional independence statements in \mathcal{M} .
- $V_{\geq}(I_{\mathcal{M}} + \langle p-1 \rangle)$ is the subset of the probability simplex specified by the model \mathcal{M} , where p denotes the sum of all unknowns.

- Let $d_1 = d_2 = d_4 = 2$ and d_3 arbitrary
- ▶ The ideal $I_{local(G)} = I_{global(G)}$ is generated by the 2×2 -minors of the following $2 \cdot d_3$ matrices

$$\begin{pmatrix} p_{11k1} & p_{11k2} & p_{12k1} & p_{12k2} \\ p_{21k1} & p_{21k2} & p_{22k1} & p_{22k2} \end{pmatrix} \qquad \begin{pmatrix} p_{11k1} & p_{11k2} & p_{21k1} & p_{21k2} \\ p_{12k1} & p_{12k2} & p_{22k1} & p_{22k2} \end{pmatrix}$$

- For each $k \in [d_3]$, the corresponding quadratic binomials define the Segre Variety $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^7$
- $V(I_{\mathcal{M}})$ is the join of d_3 Segre varieties $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^7$.

Homomorphisms and Recursive Factorization

- Recall $p(u_1, u_2, u_3, u_4) = p(u_1|u_3)p(u_2|u_3)p(u_3|u_4)p(u_4)$.
- Let x_{ij} be an indeterminate representing $p(X_1 = i | X_3 = j)$.
- Note that $\sum_{i=1}^{d_1} x_{ij} = 1$.
- Assume all the variables are binary, then $x_{21} = 1 x_{11}$.
- Let $\mathbb{R}[E] = \mathbb{R}[x_{11}, x_{12}, y_{11}, y_{12}, z_{11}, z_{12}, w]$.
- **●** The factorization of the joint probability distribution given by the graph G defines a map $\phi: \mathbb{R}^E \to \mathbb{R}^D$.

Homomorphisms and Recursive Factorization

- $p(u_1, u_2, u_3, u_4) = p(u_1|u_3)p(u_2|u_3)p(u_3|u_4)p(u_4).$
- **●** This map is specified by the ring homomorphism $\Phi: \mathbb{R}[D] \to \mathbb{R}[E]$ which takes the unknowns

$$p_{1111} \longrightarrow x_{11}y_{11}z_{11}w,$$
 $p_{1112} \longrightarrow x_{11}y_{11}z_{12}(1-w)$

$$\vdots$$

$$p_{2222} \longrightarrow (1-x_{12})(1-y_{12})(1-z_{12})(1-w)$$

- ullet The image of $\phi: \mathbb{R}^E o \mathbb{R}^D$ lies in $V_{\mathrm{local}(G)}$
- $I_{local(G)}$ is contained in the prime ideal $kernel(\Phi)$.

Theorem (Factorization Theorem). Let G be a directed acyclic graph and P a probability distribution on V(G). The following are equivalent:

DF: P admits a recursive factorization according to G

DG: P obeys the Directed Global Markov Property

DL: P obeys the Directed Local Markov Property

Denote by \mathbf{p} the product of all of the linear forms (marginals) $p_{++\cdots+u_{r+1}\cdots u_n}$.

Theorem.
$$\left(I_{\operatorname{local}(G)}:\mathbf{p}^{\infty}\right)=\left(I_{\operatorname{global}(G)}:\mathbf{p}^{\infty}\right)=\ker(\Phi).$$

- **●** The prime ideal $\ker(\Phi)$ is called the distinguished component.
- It is the set of all homogeneous polynomial functions on \mathbb{R}^D which vanish on all probabilitity distributions that factor according to G.

Bayesian Networks on four random variables

Theorem. Of the 30 local Markov ideals on four random variables, 22 are always prime, five are not prime but always radical

4 --- 2 --- 1 --- 3

and three are not radical.

- $I_{\text{local}(G)}$ is binomial in p_{ijkl} with $i \in \{+, 2, \dots, d_1\}$.
- The generators are $p_{i_1j_2k_1l}p_{i_2j_1k_2l} p_{i_1j_1k_1l}p_{i_2j_2k_2l}$, and $p_{+j_1k_2l_1}p_{+j_2k_1l_2} - p_{+j_1k_1l_1}p_{+j_2k_2l_2}$
- The S-pairs within each group reduce to zero by the Gröbner basis property of the 2×2 -minors of a generic matrix.
- The given set of irreducible quadrics is a reverse lexicographic Gröbner basis.
- The lowest variable is not a zero-divisor, and hence by symmetry none of the variables p_{ijkl} is a zero-divisor.
- Since $(I_{local(G)}: \mathbf{p}^{\infty}) = \ker(\Phi)$, then $I_{local(G)}$ coincides with the prime ideal $\ker(\Phi)$.

Global Markov Relations on Five nodes

Theorem. Of the 301 global Markov ideals on five binary random variables, 220 are prime, 68 are radical but not prime, and 13 are not radical.

# of components	1	3	5	7	17	25	29	33	39
# of ideals	220	8	41	3	9	1	2	3	1

 \blacksquare http://math.cornell.edu/~mike/bayes/global5.html.

• $I_{\mathrm{global}(G_{138})}$ has 207 minimal primes, and 37 embedded primes. Each of the 207 minimal primary components are prime.

Virginia Tech

Hidden Variables and Higher Secant Varieties

- Let G be a BN on n discrete random variables. The variables corresponding to the nodes $r + 1, \ldots, n$ are hidden,
- The observable probabilities are $p_{i_1 i_2 \cdots i_r + + \cdots +} = \sum_{j_{r+1} \in [d_{r+1}]} \sum_{j_{r+2} \in [d_{r+2}]} \cdots \sum_{j_n \in [d_n]} p_{i_1 i_2 \cdots i_r j_{r+1} j_{r+2} \cdots j_n}$.
- Let $D'=[d_1]\times\cdots\times[d_r]$ and $\mathbb{R}[D']\subset\mathbb{R}[D]$ generated by $p_{i_1i_2\cdots i_r++\cdots+}$.
- Let $\pi: \mathbb{R}^D \to \mathbb{R}^{D'}$ denote the canonical linear epimorphism induced by the inclusion of $\mathbb{R}[D']$ in $\mathbb{R}[D]$.
- Let $P_G = \ker(\Phi)$ be its homogeneous prime ideal.
- In the set of all polynomial functions which vanish on the space $\pi(V_{\geq 0}(P_G))$ of observable probability distributions is the prime ideal

$$Q_G = P_G \cap \mathbb{R}[D'].$$

- Let G be a BN with n+1 random variables F_1, \ldots, F_n, H and n directed edges (H, F_i) , $i = 1, 2, \ldots, n$.
- H is the hidden variable, and its levels $1, 2, \ldots, d_{n+1} =: r$ are called the classes.
- The observed random variables F_1, \ldots, F_n are the features of the model.
- $P_G = I_{local(G)}$. This is the ideal of the join of r copies of the Segre variety

$$X_{d_1,d_2,\ldots,d_n} := \mathbb{P}^{d_1-1} \times \mathbb{P}^{d_2-1} \times \cdots \times \mathbb{P}^{d_n-1} \subset \mathbb{P}^{d_1d_2\cdots d_n-1}.$$

■ The naive Bayes model with r classes and n features corresponds to the r-th secant variety of a Segre product of n projective spaces:

$$\overline{\pi(V(P_G))} = \operatorname{Sec}^r(X_{d_1, d_2, \dots, d_n})$$