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Bayesian Networks

Let G be a directed acyclic graph with n nodes.

The nodes represent random variables, denoted X1, . . . , Xn. The
arrows represent causal dependencies among the variables.
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p(u1, u2, u3, u4) = p(u4)p(u3|u4)p(u2|u3, u4)p(u1|u2, u3, u4)

The joint probability distribution is defined as:
p(X1 = u1, X2 = u2, . . . , Xn = un) =

∏n
i=1 p(ui| pa(ui))

p(u1, u2, u3, u4) = p(u4)p(u3|u4)p(u2|u3)p(u1|u3)

Find all distributions P that admit a recursive factorization
according to G
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Conditional Independence Relations

The set of directed local Markov relations of G is the set of
independence statements

local(G) = {Xi⊥⊥nd(Xi) | pa(Xi) : i = 1, 2, . . . , n},

The set of directed global Markov relations, global(G), is the set of
independent statements A⊥⊥B | C, for any triple A, B, C of disjoint
subsets of vertices of G such that A and B are d-separated by C.
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local(G) = {X1⊥⊥{X2, X4} | X3, X2⊥⊥{X1, X4} | X3}

global(G) = local(G) ∪ {X4⊥⊥{X1, X2} | X3}

Find all distributions P that satisfy a set of conditional in-
dependence relations obtained from G.
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Ideals, Varieties, and Independent Statements

Let X1, . . . , Xn be discrete random variables, where Xi takes
values in [di] = {1, 2, . . . , di}.

Let RD denote the real vector space of n-dimensional tables of
format d1 × · · · × dn.

Let pu1u2···un
be an indeterminate representing

p(X1 = u1, X2 = u2, . . . , Xn = un). Let R[D] be the ring
generated by these indeterminates.

Let X1, X2, X3, X4, X5 be binary variables

Let I
X1⊥⊥{X2,X4}|X3

denote the ideal of R[D] generated by the

2× 2-minors of the matrices.

(

p11k1+ p11k2+ p12k1+ p12k2+

p21k1+ p21k2+ p22k1+ p22k2+

)

pu1u2u3u4+ = pu1u2u3u41 + pu1u2u3u42
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Ideals, Varieties, and Independent Statements (2)

LetM be the independence model
M = {A(1)⊥⊥B(1) | C(1), . . . , A(m)⊥⊥B(m) | C(m)}. Then

IM = I
A(1)⊥⊥B(1)|C(1) + · · ·+ I

A(m)⊥⊥B(m)|C(m)

V (IM) ⊂ C
D is the set of all d1 × · · · × dn-tables with complex

number entries which satisfy the conditional independence
statements inM.

V≥(IM + 〈p− 1〉) is the subset of the probability simplex specified
by the modelM, where p denotes the sum of all unknowns.
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Ideals, Varieties, and Independent Statements (3)

local(G) = {X1⊥⊥{X2, X4} | X3, X2⊥⊥{X1, X4} | X3}
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1 global(G) = local(G) ∪ {X4⊥⊥{X1, X2} | X3}

Let d1 = d2 = d4 = 2 and d3 arbitrary

The ideal Ilocal(G) = Iglobal(G) is generated by the 2× 2-minors of
the following 2 · d3 matrices

(

p11k1 p11k2 p12k1 p12k2

p21k1 p21k2 p22k1 p22k2

) (

p11k1 p11k2 p21k1 p21k2

p12k1 p12k2 p22k1 p22k2

)

For each k ∈ [d3], the corresponding quadratic binomials define
the Segre Variety P1 × P1 × P1 −→ P7

V (IM) is the join of d3 Segre varieties P1 × P1 × P1 −→ P7.
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Homomorphisms and Recursive Factorization
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Recall p(u1, u2, u3, u4) = p(u1|u3)p(u2|u3)p(u3|u4)p(u4).

Let xij be an indeterminate representing p(X1 = i|X3 = j).

Note that
∑d1

i=1 xij = 1.

Assume all the variables are binary, then x21 = 1− x11.

Let R[E] = R[x11, x12, y11, y12, z11, z12, w].

The factorization of the joint probability distribution given by the
graph G defines a map φ : R

E → R
D.
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Homomorphisms and Recursive Factorization (2)

p(u1, u2, u3, u4) = p(u1|u3)p(u2|u3)p(u3|u4)p(u4).

This map is specified by the ring homomorphism
Φ : R[D]→ R[E] which takes the unknowns

p1111 −→ x11y11z11w,

p1112 −→ x11y11z12(1− w)

...

p2222 −→ (1− x12)(1− y12)(1− z12)(1− w)

The image of φ : R
E → R

D lies in Vlocal(G)

Ilocal(G) is contained in the prime ideal kernel(Φ).
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Factorization Theorem

Theorem (Factorization Theorem). Let G be a directed acyclic graph and P a
probability distribution on V (G). The following are equivalent:

DF: P admits a recursive factorization according to G

DG: P obeys the Directed Global Markov Property

DL: P obeys the Directed Local Markov Property

Denote by p the product of all of the linear forms (marginals)
p++···+ur+1···un

.

Theorem.
(

Ilocal(G) : p∞
)

=
(

Iglobal(G) : p∞
)

= ker(Φ).

The prime ideal ker(Φ) is called the distinguished component.

It is the set of all homogeneous polynomial functions on R
D which

vanish on all probabilitity distributions that factor according to G.
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Bayesian Networks on four random variables

Theorem. Of the 30 local Markov ideals on four random variables, 22 are always
prime, five are not prime but always radical
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34 12 34

1234 12 34

and three are not radical.

123

41 2

34

12

34
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A Prime example: 2←− 4 −→ 1←− 3

local(G) = {1⊥⊥2 | {3, 4}, 2⊥⊥{1, 3} | 4, 3⊥⊥{2, 4}}.

Ilocal(G) is binomial in pijkl with i ∈ {+, 2, . . . , d1}.

The generators are pi1j2k1lpi2j1k2l − pi1j1k1lpi2j2k2l, and
p+j1k2l1p+j2k1l2 − p+j1k1l1p+j2k2l2 .

The S-pairs within each group reduce to zero by the Gröbner
basis property of the 2× 2-minors of a generic matrix.

The given set of irreducible quadrics is a reverse lexicographic
Gröbner basis.

The lowest variable is not a zero-divisor, and hence by symmetry
none of the variables pijkl is a zero-divisor.

Since
(

Ilocal(G) : p∞
)

= ker(Φ), then Ilocal(G) coincides with the
prime ideal ker(Φ).
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Global Markov Relations on Five nodes

Theorem. Of the 301 global Markov ideals on five binary random variables, 220 are
prime, 68 are radical but not prime, and 13 are not radical.

# of components 1 3 5 7 17 25 29 33 39
# of ideals 220 8 41 3 9 1 2 3 1

http://math.cornell.edu/∼mike/bayes/global5.html.
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Iglobal(G138) has 207 minimal primes, and 37 embedded primes.
Each of the 207 minimal primary components are prime.
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Hidden Variables and Higher Secant Varieties

Let G be a BN on n discrete random variables. The variables
corresponding to the nodes r + 1, . . . , n are hidden,

The observable probabilities are pi1i2···ir ++···+ =
∑

jr+1∈[dr+1]

∑

jr+2∈[dr+2]
· · ·

∑

jn∈[dn] pi1i2···ir jr+1jr+2···jn
.

Let D′ = [d1]× · · · × [dr] and R[D′] ⊂ R[D] generated by
pi1i2···ir ++···+.

Let π : RD → RD′

denote the canonical linear epimorphism
induced by the inclusion of R[D′] in R[D].

Let PG = ker(Φ) be its homogeneous prime ideal.

π(V≥0(PG)) ⊂ π(V (PG))≥0 ⊂ π(V (PG)) ⊂ π(V (PG)) ⊂ R
D′

.

The set of all polynomial functions which vanish on the space
π(V≥0(PG)) of observable probability distributions is the prime
ideal

QG = PG ∩ R[D′].
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Naive Bayes Model

Let G be a BN with n + 1 random variables F1, . . . , Fn, H and n

directed edges (H, Fi), i = 1, 2, . . . , n.

H is the hidden variable, and its levels 1, 2, . . . , dn+1 =: r are
called the classes.

The observed random variables F1, . . . , Fn are the features of the
model.

F1⊥⊥F2⊥⊥ · · ·⊥⊥Fn |H.

PG = Ilocal(G). This is the ideal of the join of r copies of the Segre
variety

Xd1,d2,...,dn
:= P

d1−1× P
d2−1 × · · · × P

dn−1 ⊂ P
d1d2···dn−1.

The naive Bayes model with r classes and n features corresponds
to the r-th secant variety of a Segre product of n projective
spaces:

π(V (PG)) = Secr(Xd1,d2,...,dn
)
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