Polynomial Constraints of Bayesian Networks with Hidden Variables

Luis David Garcia ${ }^{1}$
Department of Mathematics, Virginia Polytechnic Institute and State University Blacksburg, VA 24061, USA, lgarcia@math.vt.edu.

Abstract

Multinomial Bayesian networks with hidden variables are real algebraic varieties. Thus, they are the zeros of some polynomials in the probability simplex. These polynomials form the set of all independence and non-independence constraints on the distributions over the observable variables implied by a Bayesian network with hidden variables. We determine these contraints for Bayesian networks with three observable variables and one hidden variable. The relevance of these results for model selection is discussed.

1 Introduction

A Bayesian network is a family of probability distributions. In this paper, all random variables are assume to be discrete. In this case, these families are algebraic varieties (actually, semi-algebraic sets): they are the zeros of some polynomials in the probability simplex $[3,4]$.

Bayesian networks can be described in two possible ways: parametrically, by an explicit mapping of a set of parameters to a set of distributions, or implicitly, by a set of independence constraints that the distributions must satisfy [9]. But Bayesian networks with hidden variables are usually defined parametrically because the independence and non-independence constraints on the distributions over the observable variables are not easily established.

Finding the independence and non-independence contraints is relevant for the problem of model selection [5]. Since these constraints vary from one model to another they can be used to distinguish between models. Moreover, since

[^0]these constraints are over the observable variables, their fit to data can be measured directly with some specially designed statistical tests. For instance, the so-called tetrad difference constraints have been used for model selection and evaluation [11].

In this paper we give the constraints on the distribution over the observable variables of all Bayesian network with three observable variables and one hidden variable. These results show that all but one of these models correspond to intersections (or joins) of (higher secant varieties of) Segre varieties. Moreover, these contraints are given in a compact syntactic representation. These results were first announced in [2]. But in here, we present complete proofs of our claims.

Moreover, we also compute the dimension of each of these varieties. This is also relevant for model selection. Recently, the importance of using the correct dimension of a model when applying the Bayesian Information Criterion (BIC) for Bayesian model selection was highlighted in [10]. It was shown in [2] that the correct dimension of a model equals the dimension of the corresponding variety.

This paper is organized as follows. In Section 2, we review the algebraic statistics theory of Bayesian networks with hidden variables. In section 3, we present the main theorem that computes the set of all independence and nonindependence contraints and the dimension of all Bayesian networks discussed in this paper. Most of the large-scale computations that provided enough evidence to make conjectures about the structure of these polynomial contraints were carried out in Singular [6].

2 Algebraic Statistics of Bayesian Networks

Let $X=\left\{X_{1}, \ldots, X_{n}\right\}$ be n discrete variables. We will assume that each X_{i} takes values in $\left[d_{i}\right]=\left\{1,2, \ldots, d_{i}\right\}$. A Bayesian network M for variables X is a set of joint distributions for X defined by a graph G_{M} and a set of local (multinomial) distributions \mathcal{F}_{M}. A probability distribution $P(x)$ belongs to the model M if and only if it factors according to G_{M} via

$$
\begin{equation*}
P(X=x)=\prod_{i=1}^{n} p_{i}\left(X_{i}=x_{i} \mid \operatorname{pa}\left(X_{i}\right)=j\right), \tag{1}
\end{equation*}
$$

where x is an n-dimensional vector of values of $X, \mathrm{pa}\left(X_{i}\right)$ denote the parents of node X_{i} in G_{M}, j denotes the values of $\mathrm{pa}\left(X_{i}\right)$ in x and p_{i} is a conditional distribution from \mathcal{F}_{M}. We denote the model parameters defining the
conditional probability $p_{i}\left(X_{i}=k \mid \mathrm{pa}\left(X_{i}\right)=j\right)$ by $w_{i j k}$ and the joint space parameters $P(X=x)$ by θ_{x}. The mapping that relates these parameters, derived from (1), is

$$
\begin{equation*}
\theta_{\left(x_{1}, \ldots, x_{n}\right)}=\prod_{i=1}^{n} w_{i j k}, \tag{2}
\end{equation*}
$$

where k and j denote the assignment to X_{i} and $\mathrm{pa}\left(X_{i}\right)$ as dictated by the vector of values $\left(x_{1}, \ldots, x_{n}\right)$. We can consider the model parameters and the joint space parameters as algebraic indeterminates. This allows us to form two rings of polynomials: $\mathbb{C}\left[\theta_{x}\right]$ the ring of polynomials over \mathbb{C} generated by all the indeterminates θ_{x} and $\mathbb{C}\left[w_{i j k}\right] / J$ the ring of polynomials generated by all the indeterminates $w_{i j k}$ modulo the ideal J generated by $\sum_{k=1}^{d_{i}} w_{i j k}-1$, for each i and j. The ideal J encodes the fact that $p_{i}\left(X_{i}=k \mid \mathrm{pa}\left(X_{i}\right)=\right.$ j) is a probability distribution, for each fixed i, j. Hence (2) induces a ring homomorphism

$$
\Phi: \mathbb{C}\left[\theta_{x}\right] \rightarrow \mathbb{C}\left[w_{i j k}\right] / J
$$

Note that $\mathbb{C}\left[\theta_{x}\right]$ is a polynomial ring in $N=\prod_{i=i}^{n} d_{i}$ indeterminates. Recall that $\operatorname{ker}(\Phi)$ is a prime ideal in $\mathbb{C}\left[\theta_{x}\right]$. It was shown in [3] that the intersection of the variety $V(\operatorname{ker}(\Phi))$ with the probability simplex

$$
\Delta=\left\{\left(a_{1}, \ldots, a_{N}\right) \mid a_{i} \geq 0, \sum a_{i}=1\right\}
$$

is the set of all probability distributions that factor according to G_{M}. Computing generators for $\operatorname{ker}(\Phi)$ is the so-called implicitization problem [1,5].

The graph G_{M} describes the independencies of variables in M. These independencies give an implicit description of the model M. The set of all independence relations encoded by G_{M} is known as the set of global Markov relations [9]. From this set we can construct an ideal I_{M} in $\mathbb{C}\left[\theta_{x}\right]$, see [3]. In that paper, the authors show that the variety $V\left(I_{M}\right) \subset \mathbb{C}\left[\theta_{x}\right]$ is the set of all $d_{1} \times d_{2} \times \cdots \times d_{n}$-tables with complex entries which satisfy the conditional independence statements encoded by G_{M}.

Note that the Factorization Theorem [9, Thm. 3.27] states that

$$
V\left(I_{M}\right) \cap \Delta=V(\operatorname{ker}(\Phi)) \cap \Delta .
$$

This result no longer hold if one allows complex "probabilities," see [3]. But there is a nice formula that relates both ideals in this general setting. Let $\tau \in \mathbb{C}\left[\theta_{x}\right]$ be the product of all the linear forms (marginals)

$$
\theta_{\left(+,+, \ldots,+, u_{k+1}, \ldots, u_{n}\right)}=\sum_{i_{1}=1}^{d_{1}} \sum_{i_{2}=1}^{d_{2}} \cdots \sum_{i_{k}=1}^{d_{k}} \theta_{\left(i_{1}, i_{2}, \ldots, i_{k}, u_{k+1}, \ldots, u_{n}\right)},
$$

where k is arbitrary and u_{l} takes all possible values in $\left[d_{l}\right]$ for all $k+1 \leq l \leq n$. Then we have the following theorem.

Theorem 1 The prime ideal $\operatorname{ker}(\Phi)$ is a minimal primary component of I_{M}. More precisely,

$$
\begin{equation*}
I_{M}: \tau^{\infty}=\operatorname{ker}(\Phi) . \tag{3}
\end{equation*}
$$

Consider now the situation when some of the random variables in M are hidden. After relabeling we may assume that the variables X_{k+1}, \ldots, X_{n} are hidden, while the random variables X_{1}, \ldots, X_{k} are observed. Thus, the observable probabilities are

$$
\theta_{\left(i_{1}, \ldots, i_{k},+,+, \ldots,+\right)}=\sum_{j_{k+1} \in\left[d_{k+1}\right]} \sum_{j_{k+2} \in\left[d_{k+2}\right]} \cdots \sum_{j_{n} \in\left[d_{n}\right]} \theta_{\left(i_{1}, i_{2}, \ldots, i_{k}, j_{k+1}, \ldots, j_{n}\right)} .
$$

We write $\mathbb{C}\left[\theta_{x^{\prime}}\right]$ for the polynomial subring of $\mathbb{C}\left[\theta_{x}\right]$ generated by the observable probabilities. Let $\pi: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N^{\prime}}$ denote the canonical linear epimorphism induced by the inclusion of $\mathbb{C}\left[\theta_{x^{\prime}}\right]$ into $\mathbb{C}\left[\theta_{x}\right]$. The following result was proved in [3].

Proposition 2 The set of all polynomial functions which vanish on the space of observable probability distributions is the prime ideal

$$
\operatorname{ker}(\Phi) \cap \mathbb{C}\left[\theta_{x^{\prime}}\right] .
$$

In the next section, we use this result together with Theorem 1 as an algorithm to compute the set of polynomial constraints on the distributions over the observable variables implied by a Bayesian network with hidden variables. This method is equivalent to the implicitization method proposed by Geiger and Meek [5]. The difference is that we compute the implicitization in two steps rather than one. First, we compute the prime ideal $\operatorname{ker}(\Phi)$ corresponding to the model where all variables are assumed to be observed. Then, we project the variety $V(\operatorname{ker}(\Phi))$ into the space of observable probability distributions

$$
\pi(V(\operatorname{ker}(\Phi))) \subset \mathbb{C}^{N^{\prime}}
$$

This approach enabled us to find a clear syntactic structure of the constraints implied by each Bayesian network studied in this paper.

3 Polynomial Constraints and Dimension

A step towards computing the constraints of a Bayesian network with hidden variables was given in [3], where the authors conjectured that any naive Bayes model M with 2 classes and n features is generated by the $3 \times 3-$ subdeterminants of any two-dimensional table obtained by flattening the $n-$ dimensional table $\theta_{\left(i_{1}, i_{2}, \cdots, i_{n}\right)}$. This conjecture was proved (set-theoretically in all cases and ideal-theoretically for $n=3$) by Landsberg and Manivel in [8]. The previous result concerning a naive Bayesian model with 2 classes and 2 ternary features obtained in [5] is one instance of this theorem.

In this section, we give the constraints on the distribution over the observable variables of all Bayesian networks with three observable variables and one hidden variable. For some networks, we had to assume that the hidden variable is binary for the results to hold. To simplify notation we will set $\theta_{i_{1} \cdots i_{n}}=$ $\theta_{\left(i_{1}, \ldots, i_{n}\right)}$ and $P_{G}=\operatorname{ker}(\Phi)$.

Table 1 gives all the non-isomorphic directed acyclic graphs on 4 vertices, except those arising from the complete graph.

We use Theorem 1 to compute the prime ideal $\operatorname{ker}(\Phi)$. Thus, we compute the ideal I_{M} generated by all global Markov relations and then we saturate this ideal by τ. The following theorem, proved in [3], is fundamental in this step. This theorem gives a primary decomposition of all Bayesian networks on four arbitrary random variables.

Theorem 3 Of the 30 global Markov ideals on four random variables, 26 are always prime, one is not prime but always radical (number 10 in Table 1) and three are not radical (numbers 15,17,21 in Table 1).

Therefore, we do not need to compute the saturation by τ for each of the 26 ideals I_{M} that are already prime.

The main result of this chapter is Theorem 4, which states that if G is a Bayesian network on four random variables $\left(G \neq G_{17}\right)$ where one of the variables is a hidden binary variable, then the variety associated to G is the join (or the intersection) of several (higher secant varieties of) Segre varieties.

For networks $15,17,20,21,23$, and 27 , we have conjectures about the generating set based on extensive computations for particular cases and the dimension of the corresponding ideals. We remark that a proof for any of the last four networks would also yield a proof for the remaining three.

Table 1
All Bayesian networks on four random variables.

	$4 \longrightarrow 2 \longrightarrow 1 \longleftarrow 3$ G_{11}	
	${\stackrel{L}{G_{14}}}_{4}^{4}$	
${ }_{1}^{4 \longrightarrow}{ }_{G_{16}}^{4}$		$4 \longrightarrow 3 \longrightarrow 2 \longrightarrow 1$ G_{18}
	$2 \longleftarrow 4 \longrightarrow 1 \longleftarrow 3$ G_{20}	
	$2 \longleftarrow 4 \longrightarrow 3 \longrightarrow 1$ G_{23}	
	$4 \longrightarrow 2 \quad 3 \longrightarrow 1$ G_{26}	$1 \longleftarrow 4 \longrightarrow 2 \quad 3$ G_{27}
$4 \longrightarrow 3 \xrightarrow[G_{28}]{\longrightarrow} 1 \quad 2$	$4 \longrightarrow 1 \begin{array}{cc} \\ & \\ G_{29} & 2 \\ \hline \end{array}$	1 2 3 4 G_{30}

Theorem 4 Of the 30 Bayesian networks on three random variables and one hidden variable
(I) five networks G always give zero ideals $Q_{G}=P_{G} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]$, regardless of the number of levels of the random variables. (numbers 1, 3, 7, 10, 16 in Table 1).
(II) Fourteen networks G always give ideals Q_{G} generated by quadratic polynomials arising from the 2×2 subdeterminants of certain matrices of indeterminates (numbers $4,5,11,13,14,18,19,21,22,25,26,28,29,30$ in Table 1).
(III) If the hidden variable is binary, ten networks G give ideals Q_{G} generated by quadratic and cubic polynomials arising from the 2×2 or 3×3 subdeterminants of certain matrices of indeterminates (numbers 2, 6, 8, 9, 12, 15, 20, 23, 24, 27 in Table 1).
(IV) The network G_{17} gives an ideal $Q_{G_{17}}$ generated by irreducible sextic polynomials and cubic polynomials, if the hidden variable is binary.

PROOF. We prove this theorem by an exhaustive case analysis of all thirty networks.

Networks 1, 3, 7, 16: The ideal $I_{G_{1}}$ is a prime ideal equal to $I_{3} \Perp_{4}$. It is generated by the 2×2-subdeterminants of the matrix $\left(\theta_{++k l}\right)$, where the rows are indexed by $k \in\left[d_{3}\right]$ and the columns are indexed by $l \in\left[d_{4}\right]$. We claim that $I_{3 \Perp} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]=0$. It is enough to show that every $d_{1} \times d_{2} \times d_{3}$-table $a=\left(a_{i j k}\right)$ is the projection of a table in $V\left(I_{3} \Perp_{4}\right)$. Let A be the $d_{1} \times d_{2} \times d_{3} \times d_{4}$-table defined by $A_{i j k l}=a_{i j k} / d_{4}$, so $A_{++k l}=a_{++k} / d_{4}$. Then, the d_{4} rows of $A^{\prime}=\left(A_{++k l}\right)$ are equal to each other, that is, A^{\prime} has rank 1 . So $A \in V\left(I_{3 \Perp_{4}}\right)$ and $\pi(A)=a$. Observe that $I_{G_{3}}=I_{2 \Perp_{4 \mid 3}}, I_{G_{7}}=I_{1 \Perp_{4 \mid\{2,3\}}}$ and $I_{G_{16}}=I_{\{1,2\} \Perp_{4 \mid 3}}$. Thus, a similar argument shows that $Q_{3}=Q_{7}=Q_{16}=0$.

Network 10: The ideal $I_{G_{10}}$ is a radical ideal equal to $I_{1 \Perp 4 \mid\{2,3\}}+I_{3 \Perp_{4}}$. We claim that $I_{G_{10}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]=0$. It is enough to show that every $d_{1} \times d_{2} \times d_{3}$-table $a=\left(a_{i j k}\right)$ is the projection of a table in $V\left(I_{G_{10}}\right)$. Let A be the $d_{1} \times d_{2} \times d_{3} \times d_{4^{-}}$ table defined by $A_{i j k l}=a_{i j k} / d_{4}$. We saw above that $A \in V\left(I_{\left.1 \Perp_{4 \mid\{2,3\}}\right)}\right)$ and $A \in V\left(I_{3} \Perp_{4}\right)$, so $A \in V\left(I_{G_{10}}\right)$. Theorem 11 in [3] shows that if $d_{4}=2$, then $I_{G_{10}}$ is a prime ideal. In this case, $Q_{10}=I_{G_{10}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]=0$. If $d_{4}>2, I_{G_{10}}$ is the intersection of $P_{G_{10}}$ and $2^{d_{3}-1}$ prime ideals P_{σ} indexed by all proper subsets $\sigma \subset\left[d_{3}\right]$. By construction, the ideal $M_{\sigma}=\left\langle\theta_{+j k l}: j \in\left[d_{2}\right], k \in \sigma, l \in\left[d_{4}\right]\right\rangle$ is contained in P_{σ}, so $M_{\sigma} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]=\left\langle\theta_{+j k+}: j \in\left[d_{2}\right], k \in \sigma\right\rangle$ is a subset of $P_{\sigma} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]$. Then

$$
\operatorname{dim}\left(P_{\sigma} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]\right) \leq \operatorname{dim}\left(M_{\sigma} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]\right)<d_{1} d_{2} d_{3}
$$

Moreover, since $\cup_{\sigma \in\left[d_{3}\right]} V\left(P_{\sigma} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]\right) \cup V\left(Q_{10}\right)=\mathbb{C}\left[\theta_{x^{\prime}}\right]$, then $V\left(Q_{10}\right)=\mathbb{C}\left[\theta_{x^{\prime}}\right]$.

Networks 4, 19, 26: The ideal $I_{G_{4}}$ is a prime ideal equal to $I_{3 \Perp\{2,4\}}$. It is generated by the 2×2-subdeterminants of the matrix $M=\left(\theta_{+j k l}\right)$, where the rows are labeled by $k \in\left[d_{3}\right]$ and the columns are labeled by the pairs $(j, l) \in\left[d_{2}\right] \times\left[d_{4}\right]$. First, change coordinates in $\mathbb{C}\left[\theta_{x}\right]$ by replacing each unknown $\theta_{1 j k l}$ by $\theta_{j k l}=\sum_{i=1}^{d_{1}} \theta_{i j k l}$. This coordinate change transforms $I_{G_{4}}$ into a binomial ideal in $\mathbb{C}\left[\theta_{x}\right]$.

We want to show that $Q_{4}=P_{G_{4}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]$ is equal to the ideal I generated by the 2×2-subdeterminants of the matrix $N=\left(\theta_{j k+}\right)$ where the rows are indexed by $k \in\left[d_{3}\right]$ and the columns are indexed by $j \in\left[d_{2}\right]$. Each column of this matrix is obtained by taking the sum of the corresponding d_{4} columns of M. A direct computation shows that $I \subset Q_{4}$.

The ideal Q_{4} is prime as shown in Proposition 2. The ideal I is prime since it is generated by the 2×2-subdeterminants of a generic matrix. Hence, to show equality between ideals, it would suffice to show that $V(I) \subset V\left(Q_{4}\right)$. Let $a \in V(I)$, then a is a $d_{3} \times d_{2}$-matrix of rank 1 since all the 2×2-subdeterminants of a vanish. Let A be the $d_{3} \times d_{2} d_{4}$-matrix defined by $A_{j k l}=a_{j k} / d_{4}$. Clearly, A has rank 1, so $A \in V\left(P_{G_{4}}\right)$. Thus $a=\pi(A) \in V\left(Q_{4}\right)$.

The ideal $I_{G_{19}}$ is a prime ideal equal to $I_{2} \Perp_{\{1,3,4\}}$. A similar argument shows that the ideal $Q_{19}=I_{G_{19}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]$ is generated by the 2×2-subdeterminants of the $d_{2} \times d_{1} d_{3}$-matrix $M_{+}=\left(\theta_{i j k+}\right)$ where the rows are indexed by $j \in\left[d_{2}\right]$ and the columns are indexed by pairs $(i, k) \in\left[d_{1}\right] \times\left[d_{3}\right]$. The prime ideal $I_{G_{26}}$ equals $I_{\{1,3\}} \Perp_{\{2,4\}}$. A similar argument shows that $Q_{26}=Q_{19}$.

Networks 5, 11: First, change coordinates in $\mathbb{C}\left[\theta_{x}\right]$ by replacing each indeterminate $\theta_{1 j k l}$ by $\theta_{j k l}=\sum_{i=1}^{d_{1}} \theta_{i j k l}$. The prime ideal $I_{G_{5}}$ is equal to the sum of ideals $I_{3 \Perp\{2,4\}}+I_{4 \Perp\{2,3\}}$. The first ideal equals $I_{G_{4}}$ and $I_{4} \Perp\{2,3\}, \mathbb{C}\left[\theta_{x^{\prime}}\right]=0$. Also $I_{3 \Perp\{2,4\}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right] \subseteq I_{G_{5}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]$, that is, $V\left(Q_{5}\right) \subseteq V\left(Q_{4}\right)$. On the other hand, given $a \in V\left(Q_{4}\right)$, let A be the $d_{2} \times d_{3} \times d_{4}$-table defined by $A_{j k l}=a_{j k} / d_{4}$. Then, $A \in V\left(P_{G_{4}}\right)$. So $A \in V\left(P_{G_{4}}\right) \cap V\left(I_{4} \Perp\{2,3\}\right)$ and $a=\pi(A) \in V\left(Q_{5}\right)$. Hence $Q_{5}=$ Q_{4}. The prime ideal $I_{G_{11}}$ is equal to the sum of ideals $I_{3 \Perp\{2,4\}}+I_{\{1,3\} \not{ }_{4 \mid 2}}$. A similar argument shows that $Q_{11}=Q_{4}$.

Networks 13, 14: The prime ideal $I_{G_{13}}$ equals $I_{1 \Perp\{2,4\} \mid 3}$. A similar argument as for network G_{4} shows that Q_{13} is generated by the 2×2-subdeterminants of the d_{3} matrices of the form $\left(\theta_{i j k+}\right)$ where the rows are indexed by $i \in$ [d_{1}], the columns are indexed by $j \in\left[d_{2}\right]$, and k is fixed. The ideal $I_{G_{14}}$ is a prime ideal equal to $I_{1 \Perp\{3,4\} \mid 2}$. Thus, the ideal Q_{14} is generated by the $2 \times 2-$ subdeterminants of the d_{2} matrices $N_{j}=\left(\theta_{i j k+}\right)$ where the rows are indexed by $i \in\left[d_{1}\right]$ and the columns are indexed by $k \in\left[d_{3}\right]$.

Networks 18, 22, 28: The prime ideal $I_{G_{18}}$ is equal to the sum $I_{1 \Perp\{3,4\} \mid 2}+$
$I_{\{1,2\} \Perp_{4 \mid 3}}$. The first ideal equals $I_{G_{14}}$. Also $I_{\{1,2\} \Perp_{4 \mid 3}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]=0$. Thus, a similar argument as for G_{5} shows that $Q_{G_{18}}=Q_{G_{14}}$. The prime ideal $I_{G_{22}}$ equals $I_{2 \Perp\{1,3,4\}}+I_{4 \Perp\{2,3\}}$. We know that $I_{4} \Perp\{2,3\}, \mathbb{C}\left[\theta_{x^{\prime}}\right]=0$. Similarly, we conclude that $Q_{22}=Q_{19}$. The prime ideal $I_{G_{28}}$ equals $I_{2 \Perp\{1,3,4\}}+I_{\{1,2\} \Perp_{4 \mid 3}}$. Hence $Q_{28}=I_{G_{28}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]=Q_{19}$.

Network 25: The prime ideal $I_{G_{25}}$ equals $I_{1 \Perp\{2,4\} \mid 3}+I_{2 \Perp\{1,4\} \mid 3}=I_{G_{13}}+J$. First, observe that $I_{G_{13}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]=J \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]$. Each ideal is generated by the 2×2-subdeterminants of d_{3} matrices of the form $\left(\theta_{i j k+}\right)$, where the rows are indexed by $i \in\left[d_{1}\right]$ and the columns are indexed by $j \in\left[d_{2}\right]$ and k is fixed. A similar argument as for G_{4} shows that $Q_{25}=Q_{13}$.

Networks 29, 30: The prime ideal $I_{G_{29}}$ equals $I_{2 \Perp\{1,3,4\}}+I_{3 \Perp\{1,2,4\}}$. Proceeding in a similar way as for G_{4}, we see that Q_{29} equals

$$
I_{3 \Perp\{1,2,4\}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]+I_{2 \Perp}{ }_{\{1,3,4\}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]=I_{3} \Perp\{1,2\}+I_{2 \Perp\{1,3\}} \subset \mathbb{C}\left[\theta_{x^{\prime}}\right] .
$$

The prime ideal $I_{G_{30}}$ equals $I_{2 \Perp\{1,3,4\}}+I_{3 \Perp\{1,2,4\}}+I_{4 \Perp\{1,2,3\}}$. Moreover, $I_{4 \Perp\{1,2,3\}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]=0$. This implies that $Q_{30}=Q_{29}$.

Network 21: The ideal $I=I_{G_{21}}$ equals $I_{1}+J$, where $I_{1}=I_{1 \Perp\{3,4\} \mid 2}$ and $J=I_{3 \Perp_{4}}$. In general, this ideal is not radical, see [3, Theorem 11]. A closer look at the proof of Theorem 8 in [3] reveals that $P_{G_{21}}$ equals $\left(J+I_{1}\right): \tau_{1}^{\infty}$, where τ_{1} is the product of $\theta_{+j k l}$ for all $j \in\left[d_{2}\right], k \in\left[d_{3}\right]$ and $l \in\left[d_{4}\right]$. Hence $I_{G_{21}}=P_{G_{21}} \cap\left(I, \tau_{1}^{e_{1}}\right)$ for some e_{1}. Thus, we have the following equalities

$$
\begin{align*}
V(I) & =V\left(P_{G_{21}}\right) \cup V\left(I, \tau_{1}\right) \tag{4}\\
\overline{\pi(V(I))} & =V\left(Q_{21}\right) \cup \overline{\pi\left(V\left(I, \tau_{1}\right)\right)}
\end{align*}
$$

We know that $I_{3} \Perp_{4} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]=0$. Hence, following a similar argument as in G_{9}, we see that $I \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]=I_{1} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]=Q_{14}$. So, equation (4) can be rewritten as

$$
V\left(Q_{14}\right)=V\left(Q_{21}\right) \cup \overline{\pi\left(V\left(I, \tau_{1}\right)\right)} .
$$

Therefore, $V\left(Q_{21}\right)$ is a subvariety of the irreducible variety $V\left(Q_{14}\right)$. Moreover, we conjecture that $V\left(Q_{21}\right)=V\left(Q_{14}\right)$. For this we need to show that $\operatorname{dim}\left(V\left(Q_{14}\right)\right)=\operatorname{dim}\left(V\left(Q_{21}\right)\right)$. Since both ideals are prime, this would imply $Q_{21}=Q_{14}$.

Networks 2, 12: The prime ideal $I_{G_{2}}$ equals $I_{2} \Perp_{3 \mid 4}$. It is generated by the 2×2-subdeterminants of the d_{4} matrices $\left(\theta_{+j k l_{0}}\right)$, where the rows are indexed by $j \in\left[d_{2}\right]$ and the columns are indexed by $k \in\left[d_{3}\right]$. If $d_{4}=2$, then by [7, Exercise 11.29]

$$
V\left(Q_{2}\right)=\overline{\pi\left(V\left(P_{G_{2}}\right)\right)}=S\left(M_{1}\right)=M_{2},
$$

where M_{k} is the variety of $d_{2} \times d_{3}$ matrices of rank at most k. Thus, the ideal Q_{2} is given by the 3×3-subdeterminants of the $d_{2} \times d_{3}$ matrix $\left(\theta_{+j k+}\right)$. The prime ideal $I_{G_{12}}$ equals $I_{2 \Perp\{1,3\} \mid 4}$. Thus, we can proceed as for G_{2} to find a set of generators for Q_{12}.

Networks 6, 8, 9: The prime ideal $I_{G_{6}}$ equals $I_{1 \Perp_{2 \mid\{3,4\}}}$. It is generated by the 2×2-subdeterminants of the $d_{3} d_{4}$ matrices $\left(\theta_{i j k_{0} l_{0}}\right)$, where the rows are indexed by $i \in\left[d_{1}\right]$ and the columns are indexed by $j \in\left[d_{2}\right]$. Assume $d_{4}=2$. For each $k_{0} \in\left[d_{3}\right]$, let $I_{k_{0}}$ be the ideal generated by the 2×2-subdeterminants of the 2 matrices $\left(\theta_{i j k_{0} l}\right)$, where l is fixed. Then just as for G_{2}

$$
\begin{equation*}
V\left(I_{k_{0}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]\right)=\overline{\pi\left(V\left(I_{k_{0}}\right)\right)}=S\left(M_{1}\right)=M_{2}, \tag{5}
\end{equation*}
$$

where M_{k} is the variety of $d_{1} \times d_{2}$ matrices of rank at most k. Note that $I_{G_{6}}=\sum_{k \in\left[d_{3}\right]} I_{k}$, and the ideals I_{k} are defined in pairwise disjoint set of indeterminates. For each $k_{0} \in\left[d_{3}\right]$, the fiber dimension over a general point in $V\left(I_{k_{0}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]\right)$ is equal to 2 . Thus the fiber dimension over a general point in $V\left(I_{G_{6}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]\right)$ is equal to $2 d_{3}$. Moreover, by [7, Proposition 12.2]

$$
\operatorname{codim}\left(I_{G_{6}}\right)=\operatorname{codim}\left(\sum_{k \in\left[d_{3}\right]} I_{k}\right)=\sum_{k \in\left[d_{3}\right]} \operatorname{codim}\left(I_{k}\right)=\sum_{k \in\left[d_{3}\right]} 2\left(d_{1}-1\right)\left(d_{2}-1\right)
$$

So $\operatorname{dim}\left(I_{G_{6}}\right)=2 d_{1} d_{3}+2 d_{2} d_{3}-2 d_{3}$, and

$$
\operatorname{codim}\left(\sum_{k \in\left[d_{3}\right]}\left(I_{k} \cap \mathbb{C}\left[\theta_{\left.x^{\prime}\right]}\right)\right)=\sum_{k \in\left[d_{3}\right]} \operatorname{codim}\left(I_{k} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]\right)=d_{3}\left(d_{1}-2\right)\left(d_{2}-2\right)\right.
$$

So $\operatorname{dim}\left(\sum_{k \in\left[d_{3}\right]}\left(I_{k} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]\right)\right)=2 d_{1} d_{3}+2 d_{2} d_{3}-4 d_{3}$. Moreover, [7, Corollary 11.13] implies

$$
\operatorname{dim}\left(Q_{6}\right)=\operatorname{dim}\left(I_{G_{6}}\right)-2 d_{3}=2 d_{1} d_{3}+2 d_{2} d_{3}-4 d_{3} .
$$

Therefore, $\sum_{k \in\left[d_{3}\right]}\left(I_{k} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]\right) \subseteq Q_{6}$ and both prime ideals have the same dimension. Thus, $Q_{6}=\sum_{k \in\left[d_{3}\right]}\left(I_{k} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]\right)$. Moreover, equation (5) gives a set of generators for this ideal.

The prime ideal $I_{G_{8}}$ equals $I_{1 \Perp 3 \mid\{2,4\}}$. So, we can proceed in a similar way as for G_{6} to find a set of generators for Q_{8}. The prime ideal $I_{G_{9}}$ equals $I_{1 \Perp_{2 \mid\{3,4\}}}+$ $I_{3} \Perp_{4}$. We know that $I_{3} \Perp_{4} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]=0$. Therefore, a similar argument as for G_{5} shows that $Q_{9}=Q_{6}$, if $d_{4}=2$.

Network 24: The graph G_{24} corresponds to the naive Bayes model with d_{4} classes and 3 features. As we mentioned earlier, Landsberg and Manivel proved in [8] that this ideal is generated by the 3×3-subdeterminants of any twodimensional matrix obtained by flattening the 3 -dimensional table $\theta_{\left(i_{1}, i_{2}, i_{3}\right)}$, if $d_{4}=2$. Here, we compute the dimension of this ideal.

The prime ideal $I_{G_{24}}$ equals $I_{1 \Perp\{2,3\} \mid 4}+I_{2 \Perp\{1,3\} \mid 4}+I_{3 \Perp\{1,2\} \mid 4}=I_{1}+I_{2}+I_{3}$. Note that $I_{G_{24}}=I_{1}+I_{2}=I_{1}+I_{3}=I_{2}+I_{3}$. Assume $d_{4}=2$, then by $[7$, $\operatorname{Proposition~12.2]~we~have~that~} \operatorname{codim}\left(I_{1}\right)=2\left(d_{1}-1\right)\left(d_{2} d_{3}-1\right)$, so $\operatorname{dim}\left(I_{1}\right)=$ $2 d_{1}+2 d_{2} d_{3}-2$. The ideal I_{1} is generated by the 2×2-subdeterminants of the $d_{1} \times d_{2} d_{3}$-matrices $M_{l_{0}}=\left(\theta_{i j k l_{0}}\right)$, where $l_{0} \in\{1,2\}$. Similarly, the ideal I_{2} is generated by the 2×2-subdeterminants of the $d_{2} \times d_{1} d_{3}-$ matrices $N_{l_{0}}=\left(\theta_{i j k l_{0}}\right)$, where $l_{0} \in\{1,2\}$. Note that for each $\left(k_{0}, l_{0}\right) \in\left[d_{3}\right] \times\left[d_{4}\right]$, the $d_{1} \times d_{2}$-matrix $M_{k_{0} l_{0}}=\left(\theta_{i j k_{0} l_{0}}\right)$ is the transpose of the $d_{2} \times d_{1}-$ matrix $N_{k_{0} l_{0}}=\left(\theta_{i j k_{0} l_{0}}\right)$. Hence, for each $k \geq 2$, the 2×2-subdeterminants of $N_{k l_{0}}$ lowers the dimension of I_{1} by $d_{2}-1$. Thus,

$$
\begin{aligned}
\operatorname{dim}\left(I_{G_{24}}\right) & =\operatorname{dim}\left(I_{1}+I_{2}\right)=2 d_{1}+2 d_{2} d_{3}-2-2\left(d_{2}-1\right)\left(d_{3}-1\right) \\
& =2 d_{1}+2 d_{2}+2 d_{3}-4
\end{aligned}
$$

Let $\widetilde{I}_{r}=I_{r} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]$ for $r=1,2,3$. Exercise 11.29 in [7] implies that \widetilde{I}_{1} is generated by the 3×3-subdeterminants of the $d_{1} \times d_{2} d_{3}$-matrix $\widehat{M}=\left(\theta_{i j k+}\right)$ and $\operatorname{dim}\left(\widetilde{I}_{1}\right)=2 d_{1}+2 d_{2} d_{3}-4$. Proceeding in a similar way as for $\operatorname{dim}\left(I_{1}+I_{2}\right)$, we conclude that \widetilde{I}_{2} lowers the dimension of \widetilde{I}_{1} by $2\left(d_{2}-2\right)\left(d_{3}-1\right)$, so $\operatorname{dim}\left(\widetilde{I}_{1}+\widetilde{I}_{2}\right)=$ $2 d_{1}+2 d_{2}+4 d_{3}-8$. The ideal \widetilde{I}_{3} is generated by the 3×3-subdeterminants of the $d_{3} \times d_{1} d_{2}$-matrix $L=\left(\theta_{i j k+}\right)$. Note that the k_{0} row of L can be obtained by flattening the $d_{1} \times d_{2}-$ matrix $\widetilde{M_{k_{0}}}=\left(\theta_{i j k_{0}+}\right)$. Hence, the ideal \widetilde{I}_{3} lowers the dimension of $\widetilde{I}_{1}+\widetilde{I}_{2}$ by $2\left(d_{3}-2\right)$. Thus,

$$
\operatorname{dim}\left(\widetilde{I}_{1}+\widetilde{I}_{2}+\widetilde{I}_{3}\right)=2 d_{1}+2 d_{2}+2 d_{3}-4
$$

Then $\operatorname{dim}\left(\sum_{s=1}^{3} \widetilde{I}_{s}\right)=\operatorname{dim}\left(I_{\text {local } G_{24}}\right) \geq \operatorname{dim}\left(Q_{24}\right)$. But the result in [8] states that $\sum_{s=1}^{3} \widetilde{I}_{s}=Q_{24}$. Thus, $\operatorname{dim}\left(Q_{24}\right)=2 d_{1}+2 d_{2}+2 d_{3}-4$.

Network 20: First, change coordinates in $\mathbb{C}\left[\theta_{x}\right]$ by replacing each unknown $\theta_{1 j k l}$ by $\theta_{j k l}=\sum_{i=1}^{d_{1}} \theta_{i j k l}$. The binomial prime ideal $I_{G_{20}}$ is equal to the sum of ideals $I=I_{2 \Perp\{1,3\} \mid 4}=I_{G_{12}}$ and $J=I_{3 \Perp\{2,4\}}=I_{G_{4}}$. Denote by $\tilde{I}=$ $I \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]$ and $\tilde{J}=J \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]$. Recall that the ideal I is generated by the $2 \times 2-$ subdeterminants of the d_{4} matrices $M_{l}=\left(\theta_{i j k l}\right)$ where the rows are indexed by $(i, k) \in\left[d_{1}\right] \times\left[d_{3}\right]$, the columns by $j \in\left[d_{2}\right]$, and $l \in\left[d_{4}\right]$ is fixed for each matrix. The ideal J is generated by the 2×2-subdeterminants of the matrix $N=\left(\theta_{1 j k l}\right)$ where the rows are indexed by $k \in\left[d_{3}\right]$ and the columns by $(j, l) \in\left[d_{2}\right] \times\left[d_{4}\right]$.

For each l, the ideal generated by the 2×2-subdeterminants of M_{l} has codimension $\left(d_{1} d_{3}-1\right)\left(d_{2}-1\right)$. Moreover, since the entries of each matrix are pairwise disjoint, the codimension of I equals $d_{4}\left(d_{1} d_{3}-1\right)\left(d_{2}-1\right)$. Hence $\operatorname{dim}(I)=$ $d_{1} d_{3} d_{4}+d_{2} d_{4}-d_{4}$. Similarly, the codimension of J equals $\left(d_{3}-1\right)\left(d_{2} d_{4}-1\right)$, so $\operatorname{dim}(J)=d_{1} d_{2} d_{3} d_{4}-d_{2} d_{3} d_{4}+d_{2} d_{4}+d_{3}-1$. Let $M_{i_{0} l_{0}}$ be the $d_{3} \times d_{2}$-matrix
$\left(\theta_{i_{0} j k l_{0}}\right)$, then

$$
M_{l}=\left(\begin{array}{c}
M_{1 l} \\
M_{2 l} \\
\vdots \\
M_{d_{1} l}
\end{array}\right) \quad \text { and } \quad N=\left(M_{11} M_{12} \cdots M_{1 d_{4}}\right)
$$

Hence, just as for G_{24}, the ideal J removes $d_{3}-1$ parameters of all but one of the matrices M_{l}. Thus,

$$
\begin{equation*}
\operatorname{dim}(I+J)=\operatorname{dim}(I)-\left(d_{3}-1\right)\left(d_{4}-1\right)=d_{1} d_{3} d_{4}+d_{2} d_{4}-d_{3} d_{4}+d_{3}-1 \tag{6}
\end{equation*}
$$

Let $d_{4}=2$. Then, the prime ideal \tilde{I} is generated by the 3×3-subdeterminants of the two dimensional table $M_{+}=\left(\theta_{i j k+}\right)$, where the rows are indexed by $j \in\left[d_{2}\right]$ and the columns are indexed by pairs $(i, k) \in\left[d_{1}\right] \times\left[d_{3}\right]$. Hence $\operatorname{codim}(\tilde{I})=$ $\left(d_{1} d_{3}-2\right)\left(d_{2}-2\right)$, so $\operatorname{dim}(\tilde{I})=2 d_{1} d_{3}+2 d_{2}-4$. Similarly, since \tilde{J} is generated by the 2×2-subdeterminants of the $d_{2} \times d_{3}$-matrix $N_{+}=\left(\theta_{1 j k+}\right)$, then $\operatorname{codim}(\tilde{J})=$ $\left(d_{2}-1\right)\left(d_{3}-1\right)$, so $\operatorname{dim}(\tilde{J})=d_{1} d_{2} d_{3}-d_{2} d_{3}+d_{2}+d_{3}-1$.

Recall that $I+J$ is prime, then $[7$, Thm. 11.12] implies $\operatorname{dim}(V(I+J))=$ $\operatorname{dim}\left(V\left(Q_{20}\right)\right)+\mu$. We conjecture that $\mu=2$ which implies

$$
\operatorname{dim}\left(Q_{20}\right)=\operatorname{dim}(I+J)-2=2 d_{1} d_{3}+2 d_{2}-d_{3}-3
$$

Let $M_{i_{0}+}$ be the $d_{2} \times d_{3}$-matrix $\left(\theta_{i_{0} j k+}\right)$, then $M_{+}=\left(M_{1+} M_{2+} \cdots M_{d_{1}+}\right)$, and $M_{1+}=N_{+}$. A similar argument as for the ideal $I+J$ shows that the ideal \tilde{J} lowers the dimension of \tilde{I} by $d_{3}-1$. Hence

$$
\operatorname{dim}(\tilde{I}+\tilde{J})=2 d_{1} d_{3}+2 d_{2}-d_{3}-3=\operatorname{dim}\left(Q_{20}\right)
$$

Note that $\tilde{I}+\tilde{J} \subseteq I_{G_{20}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]$ and both ideals have the same dimension. One can check that $\tilde{I}+\tilde{J}$ is a radical ideal by Gröbner basis methods. In fact, if $<$ denotes the degree reverse lexicographic ordering, then the (quadratic) generators of \tilde{J} and the (cubic) generators of \tilde{I} form a Gröbner basis of $\tilde{I}+\tilde{J}$. Therefore, the initial ideal $\mathrm{in}_{<}(\tilde{I}+\tilde{J})$ is square-free, which implies that $\tilde{I}+\tilde{J}$ is a radical ideal. Moreover, a set-theoretic result as in [8] would imply that the ideal Q_{20} equals $I_{G_{4}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]+I_{2} \Perp_{\{1,3\} \mid 4} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]$.

Network 23: The binomial prime ideal $I_{G_{23}}$ is the sum of two prime ideals $I=I_{2 \Perp\{1,3\} \mid 4}$ and $J=I_{G_{13}}$. Let $\tilde{I}=I \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]$. If $d_{4}=2$, the ideal \tilde{I} is generated by the 3×3-subdeterminants of the $d_{1} d_{3} \times d_{2}-$ matrix $M_{+}=\left(\theta_{i j k+}\right)$ obtained by flattening the 3 -dimensional table $\left(\theta_{i j k+}\right)$ according to the relation $\{1,3\} \Perp 2$. Note that $\tilde{I}+\tilde{J} \subseteq I_{G_{23}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]$. Moreover, a similar argument as for G_{20} shows that the ideal Q_{23} equals $I_{G_{13}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]+I_{2 \Perp\{1,3\} \mid 4} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]$.

The ideal I is generated by the 2×2-subdeterminants of the d_{4} matrices $M_{l}=\left(\theta_{i j k l}\right)$, where the rows are indexed by $(i, k) \in\left[d_{1}\right] \times\left[d_{3}\right]$, the columns by $j \in\left[d_{2}\right]$ and l is fixed. Recall that $\operatorname{dim}(I)=d_{1} d_{3} d_{4}+d_{2} d_{4}-d_{4}$. The ideal J is generated by the 2×2-subdeterminants of the d_{3} matrices of the form $N_{k}=\left(\theta_{i j k l}\right)$, where the rows are indexed by $i \in\left[d_{1}\right]$, the columns are indexed by $(j, l) \in\left[d_{2}\right] \times\left[d_{4}\right]$, and k is fixed. The codimension of J equals $d_{3}\left(d_{1}-1\right)\left(d_{2} d_{4}-1\right)$, so $\operatorname{dim}(J)=d_{2} d_{3} d_{4}+d_{1} d_{3}-d_{3}$.

For each k_{0}, l_{0}, let $M_{k_{0} l_{0}}$ be the $d_{1} \times d_{2}-\operatorname{matrix}\left(\theta_{i j k_{0} l_{0}}\right)$. Then

$$
M_{l}=\left(\begin{array}{c}
M_{1 l} \\
M_{2 l} \\
\vdots \\
M_{d_{1} l}
\end{array}\right) \quad \text { and } \quad N_{k}=\left(M_{11} M_{12} \cdots M_{1 d_{4}}\right)
$$

Thus, the following two $d_{1} d_{3} \times d_{2} d_{4}$-matrices are equal

$$
\left(M_{1} \cdots M_{d_{4}}\right)=\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{d_{3}}
\end{array}\right)
$$

Hence, the ideal I lowers the dimension of J by $d_{4}\left(d_{2}-1\right)\left(d_{3}-1\right)$. Thus, $\operatorname{dim}(I+J)=\operatorname{dim}(J)-d_{4}\left(d_{2}-1\right)\left(d_{3}-1\right)=d_{1} d_{3}+d_{2} d_{4}+d_{3} d_{4}-d_{3}-d_{4}$. If $d_{4}=2, \operatorname{dim}(I+J)=d_{1} d_{3}+2 d_{2}+d_{3}-2$. Theorem 11.12 in [7] implies that $\operatorname{dim}(V(I+J))=\operatorname{dim}\left(V\left(Q_{23}\right)\right)+\mu$. We conjecture that $\mu=2$, which implies $\operatorname{dim}\left(Q_{23}\right)=d_{1} d_{3}+2 d_{2}+d_{3}-4$.

Recall that $\operatorname{dim}(\tilde{I})=2 d_{1} d_{3}+2 d_{2}-4$. Moreover, since \tilde{J} is generated by the 2×2-subdeterminants of the d_{3} matrices $N_{k+}=\left(\theta_{i j k+}\right)$, then $\operatorname{codim}(\tilde{J})=$ $d_{3}\left(d_{1}-1\right)\left(d_{2}-1\right)$. So $\operatorname{dim}(\tilde{J})=d_{1} d_{3}+d_{2} d_{3}-d_{3}$. Observe that $M_{+}=$ $\left(N_{1+} N_{2+} \cdots N_{d_{3}+}\right)$. Therefore, \tilde{I} lowers the dimension of \tilde{J} by $\left(d_{2}-2\right)\left(d_{3}-2\right)$. Thus, $\operatorname{dim}(\tilde{I}+\tilde{J})=d_{1} d_{3}+2 d_{2}+d_{3}-4=\operatorname{dim}\left(Q_{23}\right)$. Hence, Q_{23} equals $\tilde{I}+\tilde{J}$.

Network 27: The prime ideal $I_{G_{27}}$ equals $I_{3 \Perp\{1,2,4\}}+I_{2 \Perp\{1,3\} \mid 4}$. Observe that $\tilde{I}=I_{3} \Perp\{1,2,4\} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]$ is generated by the 2×2-subdeterminants of the matrix $\left(\theta_{i j k+}\right)$, where the rows are indexed by $k \in\left[d_{3}\right]$ and the columns are indexed by $(i, j) \in\left[d_{1}\right] \times\left[d_{2}\right]$. If $d_{4}=2$, the prime ideal $\tilde{J}=I_{2 \Perp\{1,3\} \mid 4} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]$ is generated by the 3×3-subdeterminants of the two dimensional table $\left(\theta_{i j k+}\right)$, where the rows are indexed by $j \in\left[d_{2}\right]$ and the columns are indexed by the pairs $(i, k) \in\left[d_{1}\right] \times\left[d_{3}\right]$. Moreover, following a similar procedure as for G_{20}, we conjecture that Q_{27} equals $\tilde{I}+\tilde{J}$.

Network 15: The ideal $I_{G_{15}}$ equals $I+J$, where $I=I_{1 \Perp 4 \mid\{2,3\}}$ and $J=I_{2 \Perp 3 \mid 4}$. This ideal is not radical, in general. Hence $I_{G_{15}}=P_{G_{15}} \cap L$ for some ideal L. Thus,

$$
\overline{\pi\left(V\left(I_{G_{15}}\right)\right)}=V\left(Q_{15}\right) \cup \overline{\pi(V(L))}
$$

Note that $I \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]=0$. Moreover, if $d_{4}=2$, then a similar argument as for G_{11} shows that $I_{G_{15}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]=J \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]=Q_{2}$. Hence, $V\left(Q_{2}\right)=V\left(Q_{15}\right) \cup \overline{\pi(V(L))}$. Similar to G_{21}, we conjecture that $Q_{15}=Q_{2}$.

Network 17: The ideal $I_{G_{17}}$ equals $I+J$, where $I=I_{1 \Perp 3 \mid\{2,4\}}$ and $J=I_{2 \Perp_{4 \mid 3}}$. This ideal is not radical in general. Hence $I_{G_{17}}=P_{G_{17}} \cap L$ for some ideal L. So, we have the following equality of varieties

$$
\overline{\pi\left(V\left(I_{G_{17}}\right)\right)}=V\left(Q_{17}\right) \cup \overline{\pi(V(L))}
$$

Note that $J \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]=0$. Also $I=I_{G_{8}}$ and we have given a generating set for Q_{8} for the case $d_{4}=2$. Moreover, $I_{G_{17}} \cap \mathbb{C}\left[\theta_{x^{\prime}}\right]=Q_{8}$. Hence $V\left(Q_{17}\right)$ is an irreducible subvariety of the irreducible variety Q_{8}. But, opposed to all the previous varieties, in general $V\left(Q_{17}\right)$ will be a proper subvariety of $V\left(Q_{8}\right)$. We have a conjecture for the case $d_{1}=d_{4}=2$. Note that for this case $Q_{8}=0$, that is, $V\left(Q_{8}\right)=\mathbb{C}\left[\theta_{x^{\prime}}\right]$. To simplify notation, let $\theta_{i j k}=\theta_{i j k+}$.

The ideal Q_{17} is generated by $\binom{d_{2}}{2}\binom{d_{3}}{3}$ sextic polynomials constructed as follows. For each $j_{0} \in\left[d_{2}\right]$, let $M_{j_{0}}$ be the $d_{1} \times d_{3}-$ matrix $M_{j_{0}}=\left(\theta_{i j_{0} k}\right)$. Each $j_{1}, j_{2} \in\left[d_{2}\right], j_{1} \neq j_{2}$ specify two matrices $M_{j_{1}}$ and $M_{j_{2}}$. Also, each triplet k_{1}, k_{2}, k_{3} of distinct elements in $\left[d_{3}\right]$ specify three columns on each $2 \times d_{3^{-}}$ matrix $M_{j_{1}}$ and $M_{j_{2}}$. So we get two 2×3 submatrices $N_{j_{1}}$ and $N_{j_{2}}$

$$
\left(\begin{array}{lll}
\theta_{1 j_{1} k_{1}} & \theta_{1 j_{1} k_{2}} & \theta_{1 j_{1} k_{3}} \\
\theta_{2 j_{1} k_{1}} & \theta_{2 j_{1} k_{2}} & \theta_{2 j_{1} k_{3}}
\end{array}\right) \text { and }\left(\begin{array}{lll}
\theta_{1 j_{2} k_{1}} & \theta_{1 j_{2} k_{2}} & \theta_{1 j_{2} k_{3}} \\
\theta_{2 j_{2} k_{1}} & \theta_{2 j_{2} k_{2}} & \theta_{2 j_{2} k_{3}}
\end{array}\right)
$$

The irreducible sextic polynomial arising from these two submatrices is given by the following alternating sum

$$
\theta_{+j_{1} k_{1}} U_{1} V_{1}-\theta_{+j_{1} k_{2}} U_{2} V_{2}+\theta_{+j_{1} k_{3}} U_{3} V_{3}
$$

Where U_{s} is the determinant of the 2×2-submatrix of $N_{j_{1}}$ obtained by eliminating the s-th column. And V_{s} is the determinant of the 2×2-matrix $N_{j_{2}}^{\prime}$ where the first column of $N_{j_{2}}^{\prime}$ equals the s-th column of $N_{j_{2}}$ and the second column of $N_{j_{2}}^{\prime}$ is the product of the remaining two columns of $N_{j_{2}}$.

References

[1] D. Cox, J. Little and D. O'Shea: Ideals, Varieties and Algorithms, Springer Undergraduate Texts in Mathematics, Second Edition, 1997.
[2] L. D. Garcia: Algebraic Statistics in Model Selection, Proceedings of the Twentieth Annual Conference on Uncertainty in Artificial Intelligence (UAI2004), accepted.
[3] L. D. Garcia, M. Stillman and B. Sturmfels: Algebraic Geometry of Bayesian Networks, Journal of Symbolic Computation, Special Issue Méthodes Effectives en Géometrie Algébrique (MEGA 2004).
[4] D. Geiger, D. Heckerman, H. King and C. Meek: Stratified exponential families: graphical models and model selection, Annals of Statistics 29 (2001) 505-529.
[5] D. Geiger and C. Meek: Graphical models and exponential families, Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-98) 156-165.
[6] G.-M. Greuel, G. Pfister and H. Schönemann: Singular 2.0: A computer algebra system for polynomial computations, University of Kaiserslautern, 2001, http://www.singular.uni-kl.de.
[7] J. Harris: Algebraic Geometry: A First Course, Springer Graduate Texts in Mathematics, 1992.
[8] J. M. Landsberg and L. Manivel: On the ideals of secant varieties of Segre varieties, sumbitted.
[9] S. L. Lauritzen: Graphical Models, Oxford University Press, 1996.
[10] D. Rusakov and D. Geiger: Asymptotic model selection for naive Bayesian networks, Proceedings of the Eighteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-02).
[11] P. Spirtes, C. Glymour and R. Scheines: Causation, Prediction, and Search. Springer-Verlag, 1993.
[12] B. Sturmfels, Solving Systems of Polynomial Equations, CBMS Lectures Series, American Mathematical Society, 2002.

[^0]: 1 Partially supported by NSF grant DMS-0138323.

