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Abstract

Multinomial Bayesian networks with hidden variables are real algebraic varieties.
Thus, they are the zeros of some polynomials in the probability simplex. These
polynomials form the set of all independence and non–independence constraints
on the distributions over the observable variables implied by a Bayesian network
with hidden variables. We determine these contraints for Bayesian networks with
three observable variables and one hidden variable. The relevance of these results
for model selection is discussed.

1 Introduction

A Bayesian network is a family of probability distributions. In this paper, all
random variables are assume to be discrete. In this case, these families are
algebraic varieties (actually, semi–algebraic sets): they are the zeros of some
polynomials in the probability simplex [3,4].

Bayesian networks can be described in two possible ways: parametrically, by
an explicit mapping of a set of parameters to a set of distributions, or implic-
itly, by a set of independence constraints that the distributions must satisfy
[9]. But Bayesian networks with hidden variables are usually defined paramet-
rically because the independence and non–independence constraints on the
distributions over the observable variables are not easily established.

Finding the independence and non–independence contraints is relevant for the
problem of model selection [5]. Since these constraints vary from one model
to another they can be used to distinguish between models. Moreover, since
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these constraints are over the observable variables, their fit to data can be
measured directly with some specially designed statistical tests. For instance,
the so–called tetrad difference constraints have been used for model selection
and evaluation [11].

In this paper we give the constraints on the distribution over the observable
variables of all Bayesian network with three observable variables and one hid-
den variable. These results show that all but one of these models correspond
to intersections (or joins) of (higher secant varieties of) Segre varieties. More-
over, these contraints are given in a compact syntactic representation. These
results were first announced in [2]. But in here, we present complete proofs of
our claims.

Moreover, we also compute the dimension of each of these varieties. This is also
relevant for model selection. Recently, the importance of using the correct di-
mension of a model when applying the Bayesian Information Criterion (BIC)
for Bayesian model selection was highlighted in [10]. It was shown in [2] that
the correct dimension of a model equals the dimension of the corresponding
variety.

This paper is organized as follows. In Section 2, we review the algebraic
statistics theory of Bayesian networks with hidden variables. In section 3, we
present the main theorem that computes the set of all independence and non–
independence contraints and the dimension of all Bayesian networks discussed
in this paper. Most of the large–scale computations that provided enough evi-
dence to make conjectures about the structure of these polynomial contraints
were carried out in Singular [6].

2 Algebraic Statistics of Bayesian Networks

Let X = {X1, . . . , Xn} be n discrete variables. We will assume that each Xi

takes values in [di] = {1, 2, . . . , di}. A Bayesian network M for variables X is
a set of joint distributions for X defined by a graph GM and a set of local
(multinomial) distributions FM . A probability distribution P (x) belongs to
the model M if and only if it factors according to GM via

P (X = x) =
n∏

i=1

pi(Xi = xi | pa(Xi) = j), (1)

where x is an n–dimensional vector of values of X, pa(Xi) denote the parents
of node Xi in GM , j denotes the values of pa(Xi) in x and pi is a condi-
tional distribution from FM . We denote the model parameters defining the

2



conditional probability pi(Xi = k | pa(Xi) = j) by wijk and the joint space
parameters P (X = x) by θx. The mapping that relates these parameters,
derived from (1), is

θ(x1 ,...,xn) =
n∏

i=1

wijk, (2)

where k and j denote the assignment to Xi and pa(Xi) as dictated by the
vector of values (x1, . . . , xn). We can consider the model parameters and the
joint space parameters as algebraic indeterminates. This allows us to form
two rings of polynomials: C[θx] the ring of polynomials over C generated by
all the indeterminates θx and C[wijk]/J the ring of polynomials generated by
all the indeterminates wijk modulo the ideal J generated by

∑di

k=1 wijk − 1,
for each i and j. The ideal J encodes the fact that pi(Xi = k | pa(Xi) =
j) is a probability distribution, for each fixed i, j. Hence (2) induces a ring
homomorphism

Φ : C[θx] → C[wijk]/J.

Note that C[θx] is a polynomial ring in N =
∏n

i=i di indeterminates. Recall
that ker(Φ) is a prime ideal in C[θx]. It was shown in [3] that the intersection
of the variety V (ker(Φ)) with the probability simplex

∆ = {(a1, . . . , aN) | ai ≥ 0,
∑

ai = 1}

is the set of all probability distributions that factor according to GM . Com-
puting generators for ker(Φ) is the so-called implicitization problem [1,5].

The graph GM describes the independencies of variables in M . These inde-
pendencies give an implicit description of the model M . The set of all in-
dependence relations encoded by GM is known as the set of global Markov
relations [9]. From this set we can construct an ideal IM in C[θx], see [3]. In
that paper, the authors show that the variety V (IM) ⊂ C[θx] is the set of
all d1×d2×· · ·×dn–tables with complex entries which satisfy the conditional
independence statements encoded by GM .

Note that the Factorization Theorem [9, Thm. 3.27] states that

V (IM) ∩ ∆ = V (ker(Φ)) ∩ ∆.

This result no longer hold if one allows complex “probabilities,” see [3]. But
there is a nice formula that relates both ideals in this general setting. Let
τ ∈ C[θx] be the product of all the linear forms (marginals)
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θ(+,+,...,+,uk+1,...,un) =
d1∑

i1=1

d2∑

i2=1

· · ·
dk∑

ik=1

θ(i1,i2,...,ik,uk+1,...,un),

where k is arbitrary and ul takes all possible values in [dl] for all k+1 ≤ l ≤ n.
Then we have the following theorem.

Theorem 1 The prime ideal ker(Φ) is a minimal primary component of IM .
More precisely,

IM : τ∞ = ker(Φ). (3)

Consider now the situation when some of the random variables in M are hid-
den. After relabeling we may assume that the variables Xk+1, . . . , Xn are hid-
den, while the random variables X1, . . . , Xk are observed. Thus, the observable
probabilities are

θ(i1,...,ik,+,+,...,+) =
∑

jk+1∈[dk+1]

∑

jk+2∈[dk+2]

· · ·
∑

jn∈[dn]

θ(i1 ,i2,...,ik,jk+1,...,jn).

We write C[θx′] for the polynomial subring of C[θx] generated by the observable
probabilities. Let π : CN → CN ′

denote the canonical linear epimorphism
induced by the inclusion of C[θx′ ] into C[θx]. The following result was proved
in [3].

Proposition 2 The set of all polynomial functions which vanish on the space
of observable probability distributions is the prime ideal

ker(Φ) ∩ C[θx′ ].

In the next section, we use this result together with Theorem 1 as an algorithm
to compute the set of polynomial constraints on the distributions over the
observable variables implied by a Bayesian network with hidden variables.
This method is equivalent to the implicitization method proposed by Geiger
and Meek [5]. The difference is that we compute the implicitization in two steps
rather than one. First, we compute the prime ideal ker(Φ) corresponding to
the model where all variables are assumed to be observed. Then, we project
the variety V (ker(Φ)) into the space of observable probability distributions

π
(
V (ker(Φ))

)
⊂ C

N ′

.

This approach enabled us to find a clear syntactic structure of the constraints
implied by each Bayesian network studied in this paper.
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3 Polynomial Constraints and Dimension

A step towards computing the constraints of a Bayesian network with hid-
den variables was given in [3], where the authors conjectured that any naive
Bayes model M with 2 classes and n features is generated by the 3× 3–
subdeterminants of any two–dimensional table obtained by flattening the n–
dimensional table θ(i1 ,i2,··· ,in). This conjecture was proved (set–theoretically in
all cases and ideal–theoretically for n = 3) by Landsberg and Manivel in [8].
The previous result concerning a naive Bayesian model with 2 classes and 2
ternary features obtained in [5] is one instance of this theorem.

In this section, we give the constraints on the distribution over the observable
variables of all Bayesian networks with three observable variables and one
hidden variable. For some networks, we had to assume that the hidden variable
is binary for the results to hold. To simplify notation we will set θi1···in =
θ(i1 ,...,in) and PG = ker(Φ).

Table 1 gives all the non–isomorphic directed acyclic graphs on 4 vertices,
except those arising from the complete graph.

We use Theorem 1 to compute the prime ideal ker(Φ). Thus, we compute the
ideal IM generated by all global Markov relations and then we saturate this
ideal by τ . The following theorem, proved in [3], is fundamental in this step.
This theorem gives a primary decomposition of all Bayesian networks on four
arbitrary random variables.

Theorem 3 Of the 30 global Markov ideals on four random variables, 26 are
always prime, one is not prime but always radical (number 10 in Table 1) and
three are not radical (numbers 15,17,21 in Table 1).

Therefore, we do not need to compute the saturation by τ for each of the 26
ideals IM that are already prime.

The main result of this chapter is Theorem 4, which states that if G is a
Bayesian network on four random variables (G 6= G17) where one of the vari-
ables is a hidden binary variable, then the variety associated to G is the join
(or the intersection) of several (higher secant varieties of) Segre varieties.

For networks 15, 17, 20, 21, 23, and 27, we have conjectures about the generat-
ing set based on extensive computations for particular cases and the dimension
of the corresponding ideals. We remark that a proof for any of the last four
networks would also yield a proof for the remaining three.
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Table 1
All Bayesian networks on four random variables.
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Theorem 4 Of the 30 Bayesian networks on three random variables and one
hidden variable

(I) five networks G always give zero ideals QG = PG ∩ C[θx′ ], regardless of the
number of levels of the random variables. (numbers 1, 3, 7, 10, 16 in Table
1).

(II) Fourteen networks G always give ideals QG generated by quadratic polyno-
mials arising from the 2×2 subdeterminants of certain matrices of indeter-
minates (numbers 4, 5, 11, 13, 14, 18, 19, 21, 22, 25, 26, 28, 29, 30 in
Table 1).

(III) If the hidden variable is binary, ten networks G give ideals QG generated by
quadratic and cubic polynomials arising from the 2 × 2 or 3 × 3 subdeter-
minants of certain matrices of indeterminates (numbers 2, 6, 8, 9, 12, 15,
20, 23, 24, 27 in Table 1).

(IV) The network G17 gives an ideal QG17
generated by irreducible sextic polyno-

mials and cubic polynomials, if the hidden variable is binary.

PROOF. We prove this theorem by an exhaustive case analysis of all thirty
networks.

Networks 1, 3, 7, 16: The ideal IG1
is a prime ideal equal to I

3⊥⊥4
. It is

generated by the 2×2–subdeterminants of the matrix (θ++kl), where the rows
are indexed by k ∈ [d3] and the columns are indexed by l ∈ [d4]. We claim that
I
3⊥⊥4

∩C[θx′ ] = 0. It is enough to show that every d1×d2×d3–table a = (aijk) is
the projection of a table in V (I

3⊥⊥4
). Let A be the d1×d2×d3×d4–table defined

by Aijkl = aijk/d4, so A++kl = a++k/d4. Then, the d4 rows of A′ = (A++kl) are
equal to each other, that is, A′ has rank 1. So A ∈ V (I

3⊥⊥4
) and π(A) = a.

Observe that IG3
= I

2⊥⊥4|3
, IG7

= I
1⊥⊥4|{2,3}

and IG16
= I

{1,2}⊥⊥4|3
. Thus, a

similar argument shows that Q3 = Q7 = Q16 = 0.

Network 10: The ideal IG10
is a radical ideal equal to I

1⊥⊥4|{2,3}
+ I

3⊥⊥4
. We

claim that IG10
∩ C[θx′ ] = 0. It is enough to show that every d1×d2×d3–table

a = (aijk) is the projection of a table in V (IG10
). Let A be the d1×d2×d3×d4–

table defined by Aijkl = aijk/d4. We saw above that A ∈ V (I
1⊥⊥4|{2,3}

) and

A ∈ V (I
3⊥⊥4

), so A ∈ V (IG10
). Theorem 11 in [3] shows that if d4 = 2, then

IG10
is a prime ideal. In this case, Q10 = IG10

∩C[θx′ ] = 0. If d4 > 2, IG10
is the

intersection of PG10
and 2d3−1 prime ideals Pσ indexed by all proper subsets

σ ⊂ [d3]. By construction, the ideal Mσ = 〈θ+jkl : j ∈ [d2], k ∈ σ, l ∈ [d4]〉
is contained in Pσ, so Mσ ∩ C[θx′] = 〈θ+jk+ : j ∈ [d2], k ∈ σ〉 is a subset of
Pσ ∩ C[θx′ ]. Then

dim(Pσ ∩ C[θx′ ]) ≤ dim(Mσ ∩ C[θx′ ]) < d1d2d3

Moreover, since ∪σ∈[d3 ]V (Pσ ∩C[θx′ ])∪V (Q10) = C[θx′ ], then V (Q10) = C[θx′ ].
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Networks 4, 19, 26: The ideal IG4
is a prime ideal equal to I

3⊥⊥{2,4}
. It

is generated by the 2×2–subdeterminants of the matrix M = (θ+jkl), where
the rows are labeled by k ∈ [d3] and the columns are labeled by the pairs
(j, l) ∈ [d2]×[d4]. First, change coordinates in C[θx] by replacing each unknown
θ1jkl by θjkl =

∑d1

i=1 θijkl. This coordinate change transforms IG4
into a binomial

ideal in C[θx].

We want to show that Q4 = PG4
∩ C[θx′] is equal to the ideal I generated

by the 2×2–subdeterminants of the matrix N = (θjk+) where the rows are
indexed by k ∈ [d3] and the columns are indexed by j ∈ [d2]. Each column of
this matrix is obtained by taking the sum of the corresponding d4 columns of
M . A direct computation shows that I ⊂ Q4.

The ideal Q4 is prime as shown in Proposition 2. The ideal I is prime since
it is generated by the 2×2–subdeterminants of a generic matrix. Hence, to
show equality between ideals, it would suffice to show that V (I) ⊂ V (Q4). Let
a ∈ V (I), then a is a d3×d2–matrix of rank 1 since all the 2×2–subdeterminants
of a vanish. Let A be the d3×d2d4–matrix defined by Ajkl = ajk/d4. Clearly,
A has rank 1, so A ∈ V (PG4

). Thus a = π(A) ∈ V (Q4).

The ideal IG19
is a prime ideal equal to I

2⊥⊥{1,3,4}
. A similar argument shows

that the ideal Q19 = IG19
∩ C[θx′ ] is generated by the 2×2–subdeterminants

of the d2×d1d3–matrix M+ = (θijk+) where the rows are indexed by j ∈ [d2]
and the columns are indexed by pairs (i, k) ∈ [d1]×[d3]. The prime ideal IG26

equals I
{1,3}⊥⊥{2,4}

. A similar argument shows that Q26 = Q19.

Networks 5, 11: First, change coordinates in C[θx] by replacing each indeter-
minate θ1jkl by θjkl =

∑d1

i=1 θijkl. The prime ideal IG5
is equal to the sum of ide-

als I
3⊥⊥{2,4}

+I
4⊥⊥{2,3}

. The first ideal equals IG4
and I

4⊥⊥{2,3}
∩C[θx′ ] = 0. Also

I
3⊥⊥{2,4}

∩ C[θx′] ⊆ IG5
∩ C[θx′ ], that is, V (Q5) ⊆ V (Q4). On the other hand,

given a ∈ V (Q4), let A be the d2×d3×d4–table defined by Ajkl = ajk/d4. Then,
A ∈ V (PG4

). So A ∈ V (PG4
)∩V (I

4⊥⊥{2,3}
) and a = π(A) ∈ V (Q5). Hence Q5 =

Q4. The prime ideal IG11
is equal to the sum of ideals I

3⊥⊥{2,4}
+ I

{1,3}⊥⊥4|2
. A

similar argument shows that Q11 = Q4.

Networks 13, 14: The prime ideal IG13
equals I

1⊥⊥{2,4}|3
. A similar argument

as for network G4 shows that Q13 is generated by the 2×2–subdeterminants
of the d3 matrices of the form (θijk+) where the rows are indexed by i ∈
[d1], the columns are indexed by j ∈ [d2], and k is fixed. The ideal IG14

is a
prime ideal equal to I

1⊥⊥{3,4}|2
. Thus, the ideal Q14 is generated by the 2×2–

subdeterminants of the d2 matrices Nj = (θijk+) where the rows are indexed
by i ∈ [d1] and the columns are indexed by k ∈ [d3].

Networks 18, 22, 28: The prime ideal IG18
is equal to the sum I

1⊥⊥{3,4}|2
+
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I
{1,2}⊥⊥4|3

. The first ideal equals IG14
. Also I

{1,2}⊥⊥4|3
∩ C[θx′ ] = 0. Thus, a

similar argument as for G5 shows that QG18
= QG14

. The prime ideal IG22

equals I
2⊥⊥{1,3,4}

+ I
4⊥⊥{2,3}

. We know that I
4⊥⊥{2,3}

∩C[θx′ ] = 0. Similarly, we

conclude that Q22 = Q19. The prime ideal IG28
equals I

2⊥⊥{1,3,4}
+ I

{1,2}⊥⊥4|3
.

Hence Q28 = IG28
∩ C[θx′ ] = Q19.

Network 25: The prime ideal IG25
equals I

1⊥⊥{2,4}|3
+ I

2⊥⊥{1,4}|3
= IG13

+ J .

First, observe that IG13
∩ C[θx′ ] = J ∩ C[θx′]. Each ideal is generated by the

2×2–subdeterminants of d3 matrices of the form (θijk+), where the rows are
indexed by i ∈ [d1] and the columns are indexed by j ∈ [d2] and k is fixed. A
similar argument as for G4 shows that Q25 = Q13.

Networks 29, 30: The prime ideal IG29
equals I

2⊥⊥{1,3,4}
+ I

3⊥⊥{1,2,4}
. Pro-

ceeding in a similar way as for G4, we see that Q29 equals

I
3⊥⊥{1,2,4}

∩ C[θx′ ] + I
2⊥⊥{1,3,4}

∩ C[θx′ ] = I
3⊥⊥{1,2}

+ I
2⊥⊥{1,3}

⊂ C[θx′ ].

The prime ideal IG30
equals I

2⊥⊥{1,3,4}
+ I

3⊥⊥{1,2,4}
+ I

4⊥⊥{1,2,3}
. Moreover,

I
4⊥⊥{1,2,3}

∩ C[θx′ ] = 0. This implies that Q30 = Q29.

Network 21: The ideal I = IG21
equals I1 + J , where I1 = I

1⊥⊥{3,4}|2
and

J = I
3⊥⊥4

. In general, this ideal is not radical, see [3, Theorem 11]. A closer
look at the proof of Theorem 8 in [3] reveals that PG21

equals (J + I1) : τ∞
1 ,

where τ1 is the product of θ+jkl for all j ∈ [d2], k ∈ [d3] and l ∈ [d4]. Hence
IG21

= PG21
∩ (I, τ e1

1 ) for some e1. Thus, we have the following equalities

V (I) = V (PG21
) ∪ V (I, τ1)

π(V (I)) = V (Q21) ∪ π(V (I, τ1)) (4)

We know that I
3⊥⊥4

∩C[θx′ ] = 0. Hence, following a similar argument as in G9,
we see that I ∩C[θx′ ] = I1 ∩C[θx′ ] = Q14. So, equation (4) can be rewritten as

V (Q14) = V (Q21) ∪ π(V (I, τ1)).

Therefore, V (Q21) is a subvariety of the irreducible variety V (Q14). More-
over, we conjecture that V (Q21) = V (Q14). For this we need to show that
dim(V (Q14)) = dim(V (Q21)). Since both ideals are prime, this would imply
Q21 = Q14.

Networks 2, 12: The prime ideal IG2
equals I

2⊥⊥3|4
. It is generated by the

2×2–subdeterminants of the d4 matrices (θ+jkl0), where the rows are indexed
by j ∈ [d2] and the columns are indexed by k ∈ [d3]. If d4 = 2, then by [7,
Exercise 11.29]

V (Q2) = π(V (PG2
)) = S(M1) = M2,
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where Mk is the variety of d2×d3 matrices of rank at most k. Thus, the ideal
Q2 is given by the 3×3–subdeterminants of the d2×d3 matrix (θ+jk+). The
prime ideal IG12

equals I
2⊥⊥{1,3}|4

. Thus, we can proceed as for G2 to find a

set of generators for Q12.

Networks 6, 8, 9: The prime ideal IG6
equals I

1⊥⊥2|{3,4}
. It is generated by

the 2×2–subdeterminants of the d3d4 matrices (θijk0l0), where the rows are
indexed by i ∈ [d1] and the columns are indexed by j ∈ [d2]. Assume d4 = 2.
For each k0 ∈ [d3], let Ik0

be the ideal generated by the 2×2–subdeterminants
of the 2 matrices (θijk0l), where l is fixed. Then just as for G2

V (Ik0
∩ C[θx′ ]) = π(V (Ik0

)) = S(M1) = M2, (5)

where Mk is the variety of d1 ×d2 matrices of rank at most k. Note that
IG6

=
∑

k∈[d3] Ik, and the ideals Ik are defined in pairwise disjoint set of in-
determinates. For each k0 ∈ [d3], the fiber dimension over a general point in
V (Ik0

∩ C[θx′]) is equal to 2. Thus the fiber dimension over a general point in
V (IG6

∩ C[θx′ ]) is equal to 2d3. Moreover, by [7, Proposition 12.2]

codim(IG6
) = codim(

∑

k∈[d3]

Ik) =
∑

k∈[d3]

codim(Ik) =
∑

k∈[d3]

2(d1 − 1)(d2 − 1)

So dim(IG6
) = 2d1d3 + 2d2d3 − 2d3, and

codim
( ∑

k∈[d3]

(Ik ∩ C[θx′])
)

=
∑

k∈[d3]

codim(Ik ∩ C[θx′]) = d3(d1 − 2)(d2 − 2)

So dim
( ∑

k∈[d3](Ik ∩ C[θx′ ])
)

= 2d1d3 + 2d2d3 − 4d3. Moreover, [7, Corollary

11.13] implies

dim(Q6) = dim(IG6
) − 2d3 = 2d1d3 + 2d2d3 − 4d3.

Therefore,
∑

k∈[d3](Ik ∩ C[θx′ ]) ⊆ Q6 and both prime ideals have the same
dimension. Thus, Q6 =

∑
k∈[d3](Ik ∩C[θx′ ]). Moreover, equation (5) gives a set

of generators for this ideal.

The prime ideal IG8
equals I

1⊥⊥3|{2,4}
. So, we can proceed in a similar way as

for G6 to find a set of generators for Q8. The prime ideal IG9
equals I

1⊥⊥2|{3,4}
+

I
3⊥⊥4

. We know that I
3⊥⊥4

∩ C[θx′ ] = 0. Therefore, a similar argument as for
G5 shows that Q9 = Q6, if d4 = 2.

Network 24: The graph G24 corresponds to the naive Bayes model with d4

classes and 3 features. As we mentioned earlier, Landsberg and Manivel proved
in [8] that this ideal is generated by the 3×3–subdeterminants of any two–
dimensional matrix obtained by flattening the 3–dimensional table θ(i1 ,i2,i3), if
d4 = 2. Here, we compute the dimension of this ideal.
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The prime ideal IG24
equals I

1⊥⊥{2,3}|4
+ I

2⊥⊥{1,3}|4
+ I

3⊥⊥{1,2}|4
= I1 + I2 + I3.

Note that IG24
= I1 + I2 = I1 + I3 = I2 + I3. Assume d4 = 2, then by [7,

Proposition 12.2] we have that codim(I1) = 2(d1 − 1)(d2d3 − 1), so dim(I1) =
2d1 + 2d2d3 − 2. The ideal I1 is generated by the 2×2–subdeterminants of the
d1×d2d3–matrices Ml0 = (θijkl0), where l0 ∈ {1, 2}. Similarly, the ideal I2 is
generated by the 2×2–subdeterminants of the d2×d1d3–matrices Nl0 = (θijkl0),
where l0 ∈ {1, 2}. Note that for each (k0, l0) ∈ [d3]× [d4], the d1×d2–matrix
Mk0l0 = (θijk0l0) is the transpose of the d2×d1–matrix Nk0l0 = (θijk0l0). Hence,
for each k ≥ 2, the 2×2–subdeterminants of Nkl0 lowers the dimension of I1

by d2 − 1. Thus,

dim(IG24
) = dim(I1 + I2) = 2d1 + 2d2d3 − 2 − 2(d2 − 1)(d3 − 1)

= 2d1 + 2d2 + 2d3 − 4.

Let Ĩr = Ir ∩ C[θx′ ] for r = 1, 2, 3. Exercise 11.29 in [7] implies that Ĩ1 is
generated by the 3×3–subdeterminants of the d1×d2d3–matrix M̃ = (θijk+) and
dim(Ĩ1) = 2d1 +2d2d3 − 4. Proceeding in a similar way as for dim(I1 + I2), we
conclude that Ĩ2 lowers the dimension of Ĩ1 by 2(d2−2)(d3−1), so dim(Ĩ1+Ĩ2) =
2d1 + 2d2 + 4d3 − 8. The ideal Ĩ3 is generated by the 3×3–subdeterminants of
the d3×d1d2–matrix L = (θijk+). Note that the k0 row of L can be obtained

by flattening the d1×d2–matrix M̃k0
= (θijk0+). Hence, the ideal Ĩ3 lowers the

dimension of Ĩ1 + Ĩ2 by 2(d3 − 2). Thus,

dim(Ĩ1 + Ĩ2 + Ĩ3) = 2d1 + 2d2 + 2d3 − 4.

Then dim(
∑3

s=1 Ĩs) = dim(Ilocal G24
) ≥ dim(Q24). But the result in [8] states

that
∑3

s=1 Ĩs = Q24. Thus, dim(Q24) = 2d1 + 2d2 + 2d3 − 4.

Network 20: First, change coordinates in C[θx] by replacing each unknown
θ1jkl by θjkl =

∑d1

i=1 θijkl. The binomial prime ideal IG20
is equal to the sum

of ideals I = I
2⊥⊥{1,3}|4

= IG12
and J = I

3⊥⊥{2,4}
= IG4

. Denote by Ĩ =

I ∩C[θx′ ] and J̃ = J ∩C[θx′ ]. Recall that the ideal I is generated by the 2×2–
subdeterminants of the d4 matrices Ml = (θijkl) where the rows are indexed by
(i, k) ∈ [d1]×[d3], the columns by j ∈ [d2], and l ∈ [d4] is fixed for each matrix.
The ideal J is generated by the 2×2–subdeterminants of the matrix N = (θ1jkl)
where the rows are indexed by k ∈ [d3] and the columns by (j, l) ∈ [d2]×[d4].

For each l, the ideal generated by the 2×2–subdeterminants of Ml has codimen-
sion (d1d3 −1)(d2 −1). Moreover, since the entries of each matrix are pairwise
disjoint, the codimension of I equals d4(d1d3 − 1)(d2 − 1). Hence dim(I) =
d1d3d4 + d2d4 − d4. Similarly, the codimension of J equals (d3 − 1)(d2d4 − 1),
so dim(J) = d1d2d3d4 − d2d3d4 + d2d4 + d3 − 1. Let Mi0l0 be the d3×d2–matrix
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(θi0jkl0), then

Ml =




M1l

M2l

...

Md1l




and N = (M11M12 · · ·M1d4
).

Hence, just as for G24, the ideal J removes d3 − 1 parameters of all but one of
the matrices Ml. Thus,

dim(I + J) = dim(I)− (d3 − 1)(d4 − 1) = d1d3d4 + d2d4 − d3d4 + d3 − 1. (6)

Let d4 = 2. Then, the prime ideal Ĩ is generated by the 3×3–subdeterminants of
the two dimensional table M+ = (θijk+), where the rows are indexed by j ∈ [d2]
and the columns are indexed by pairs (i, k) ∈ [d1]× [d3]. Hence codim(Ĩ) =
(d1d3−2)(d2−2), so dim(Ĩ) = 2d1d3+2d2−4. Similarly, since J̃ is generated by
the 2×2–subdeterminants of the d2×d3–matrix N+ = (θ1jk+), then codim(J̃) =
(d2 − 1)(d3 − 1), so dim(J̃) = d1d2d3 − d2d3 + d2 + d3 − 1.

Recall that I + J is prime, then [7, Thm. 11.12] implies dim(V (I + J)) =
dim(V (Q20)) + µ. We conjecture that µ = 2 which implies

dim(Q20) = dim(I + J) − 2 = 2d1d3 + 2d2 − d3 − 3.

Let Mi0+ be the d2×d3–matrix (θi0jk+), then M+ = (M1+M2+ · · ·Md1+), and
M1+ = N+. A similar argument as for the ideal I + J shows that the ideal J̃
lowers the dimension of Ĩ by d3 − 1. Hence

dim(Ĩ + J̃) = 2d1d3 + 2d2 − d3 − 3 = dim(Q20).

Note that Ĩ + J̃ ⊆ IG20
∩ C[θx′] and both ideals have the same dimension.

One can check that Ĩ + J̃ is a radical ideal by Gröbner basis methods. In fact,
if < denotes the degree reverse lexicographic ordering, then the (quadratic)
generators of J̃ and the (cubic) generators of Ĩ form a Gröbner basis of Ĩ + J̃ .
Therefore, the initial ideal in<(Ĩ + J̃) is square–free, which implies that Ĩ + J̃
is a radical ideal. Moreover, a set–theoretic result as in [8] would imply that
the ideal Q20 equals IG4

∩ C[θx′ ] + I
2⊥⊥{1,3}|4

∩ C[θx′ ].

Network 23: The binomial prime ideal IG23
is the sum of two prime ideals

I = I
2⊥⊥{1,3}|4

and J = IG13
. Let Ĩ = I ∩ C[θx′ ]. If d4 = 2, the ideal Ĩ is

generated by the 3×3–subdeterminants of the d1d3×d2–matrix M+ = (θijk+)
obtained by flattening the 3–dimensional table (θijk+) according to the relation
{1, 3}⊥⊥2. Note that Ĩ + J̃ ⊆ IG23

∩ C[θx′ ]. Moreover, a similar argument as
for G20 shows that the ideal Q23 equals IG13

∩ C[θx′ ] + I
2⊥⊥{1,3}|4

∩ C[θx′ ].
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The ideal I is generated by the 2× 2–subdeterminants of the d4 matrices
Ml = (θijkl), where the rows are indexed by (i, k) ∈ [d1]× [d3], the columns
by j ∈ [d2] and l is fixed. Recall that dim(I) = d1d3d4 + d2d4 − d4. The
ideal J is generated by the 2×2–subdeterminants of the d3 matrices of the
form Nk = (θijkl), where the rows are indexed by i ∈ [d1], the columns are
indexed by (j, l) ∈ [d2]× [d4], and k is fixed. The codimension of J equals
d3(d1 − 1)(d2d4 − 1), so dim(J) = d2d3d4 + d1d3 − d3.

For each k0, l0, let Mk0l0 be the d1×d2–matrix (θijk0l0). Then

Ml =




M1l

M2l

...

Md1l




and Nk = (M11M12 · · ·M1d4
).

Thus, the following two d1d3×d2d4–matrices are equal

(
M1 · · · Md4

)
=




N1

...

Nd3




Hence, the ideal I lowers the dimension of J by d4(d2 − 1)(d3 − 1). Thus,
dim(I + J) = dim(J) − d4(d2 − 1)(d3 − 1) = d1d3 + d2d4 + d3d4 − d3 − d4. If
d4 = 2, dim(I + J) = d1d3 + 2d2 + d3 − 2. Theorem 11.12 in [7] implies that
dim(V (I + J)) = dim(V (Q23)) + µ. We conjecture that µ = 2, which implies
dim(Q23) = d1d3 + 2d2 + d3 − 4.

Recall that dim(Ĩ) = 2d1d3 + 2d2 − 4. Moreover, since J̃ is generated by the
2×2–subdeterminants of the d3 matrices Nk+ = (θijk+), then codim(J̃) =
d3(d1 − 1)(d2 − 1). So dim(J̃) = d1d3 + d2d3 − d3. Observe that M+ =
(N1+N2+ · · ·Nd3+). Therefore, Ĩ lowers the dimension of J̃ by (d2 −2)(d3−2).
Thus, dim(Ĩ + J̃) = d1d3 + 2d2 + d3 − 4 = dim(Q23). Hence, Q23 equals Ĩ + J̃ .

Network 27: The prime ideal IG27
equals I

3⊥⊥{1,2,4}
+ I

2⊥⊥{1,3}|4
. Observe that

Ĩ = I
3⊥⊥{1,2,4}

∩C[θx′ ] is generated by the 2×2–subdeterminants of the matrix

(θijk+), where the rows are indexed by k ∈ [d3] and the columns are indexed
by (i, j) ∈ [d1]× [d2]. If d4 = 2, the prime ideal J̃ = I

2⊥⊥{1,3}|4
∩ C[θx′ ] is

generated by the 3×3–subdeterminants of the two dimensional table (θijk+),
where the rows are indexed by j ∈ [d2] and the columns are indexed by the
pairs (i, k) ∈ [d1]×[d3]. Moreover, following a similar procedure as for G20, we
conjecture that Q27 equals Ĩ + J̃ .

13



Network 15: The ideal IG15
equals I+J , where I = I

1⊥⊥4|{2,3}
and J = I

2⊥⊥3|4
.

This ideal is not radical, in general. Hence IG15
= PG15

∩ L for some ideal L.
Thus,

π(V (IG15
)) = V (Q15) ∪ π(V (L)).

Note that I∩C[θx′] = 0. Moreover, if d4 = 2, then a similar argument as for G11

shows that IG15
∩C[θx′ ] = J ∩C[θx′ ] = Q2. Hence, V (Q2) = V (Q15)∪π(V (L)).

Similar to G21, we conjecture that Q15 = Q2.

Network 17: The ideal IG17
equals I+J , where I = I

1⊥⊥3|{2,4}
and J = I

2⊥⊥4|3
.

This ideal is not radical in general. Hence IG17
= PG17

∩ L for some ideal L.
So, we have the following equality of varieties

π(V (IG17
)) = V (Q17) ∪ π(V (L)).

Note that J ∩ C[θx′ ] = 0. Also I = IG8
and we have given a generating set

for Q8 for the case d4 = 2. Moreover, IG17
∩ C[θx′] = Q8. Hence V (Q17) is an

irreducible subvariety of the irreducible variety Q8. But, opposed to all the
previous varieties, in general V (Q17) will be a proper subvariety of V (Q8). We
have a conjecture for the case d1 = d4 = 2. Note that for this case Q8 = 0,
that is, V (Q8) = C[θx′ ]. To simplify notation, let θijk = θijk+.

The ideal Q17 is generated by
(

d2

2

)(
d3

3

)
sextic polynomials constructed as fol-

lows. For each j0 ∈ [d2], let Mj0 be the d1×d3–matrix Mj0 = (θij0k). Each
j1, j2 ∈ [d2], j1 6= j2 specify two matrices Mj1 and Mj2. Also, each triplet
k1, k2, k3 of distinct elements in [d3] specify three columns on each 2×d3–
matrix Mj1 and Mj2 . So we get two 2×3 submatrices Nj1 and Nj2




θ1j1k1
θ1j1k2

θ1j1k3

θ2j1k1
θ2j1k2

θ2j1k3


 and




θ1j2k1
θ1j2k2

θ1j2k3

θ2j2k1
θ2j2k2

θ2j2k3




The irreducible sextic polynomial arising from these two submatrices is given
by the following alternating sum

θ+j1k1
U1V1 − θ+j1k2

U2V2 + θ+j1k3
U3V3.

Where Us is the determinant of the 2×2–submatrix of Nj1 obtained by elim-
inating the s-th column. And Vs is the determinant of the 2×2–matrix N ′

j2

where the first column of N ′
j2

equals the s-th column of Nj2 and the second
column of N ′

j2
is the product of the remaining two columns of Nj2.
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