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Computer Simulations

An important way to study many dynamical
systems is to simulate them on a computer
building a model for them.

Need for a mathematical theory that addresses
several theoretical issues that arise in the process
of designing computer simulations

What are the characteristics that any simulation
of a given system should possess?

How do we know when two different models
represent the same system?

Can we find a more efficient simulation of a
given system?

SIAM conference on Discrete Mathematics – p. 2



Computer Simulations

An important way to study many dynamical
systems is to simulate them on a computer
building a model for them.

Need for a mathematical theory that addresses
several theoretical issues that arise in the process
of designing computer simulations

What are the characteristics that any simulation
of a given system should possess?

How do we know when two different models
represent the same system?

Can we find a more efficient simulation of a
given system?

SIAM conference on Discrete Mathematics – p. 2



Computer Simulations

An important way to study many dynamical
systems is to simulate them on a computer
building a model for them.

Need for a mathematical theory that addresses
several theoretical issues that arise in the process
of designing computer simulations

What are the characteristics that any simulation
of a given system should possess?

How do we know when two different models
represent the same system?

Can we find a more efficient simulation of a
given system?

SIAM conference on Discrete Mathematics – p. 2



Computer Simulations

An important way to study many dynamical
systems is to simulate them on a computer
building a model for them.

Need for a mathematical theory that addresses
several theoretical issues that arise in the process
of designing computer simulations

What are the characteristics that any simulation
of a given system should possess?

How do we know when two different models
represent the same system?

Can we find a more efficient simulation of a
given system?

SIAM conference on Discrete Mathematics – p. 2



Computer Simulations

An important way to study many dynamical
systems is to simulate them on a computer
building a model for them.

Need for a mathematical theory that addresses
several theoretical issues that arise in the process
of designing computer simulations

What are the characteristics that any simulation
of a given system should possess?

How do we know when two different models
represent the same system?

Can we find a more efficient simulation of a
given system?

SIAM conference on Discrete Mathematics – p. 2



Sequential Dynamical Systems
C. L. Barrett, H. S. Mortveit, C. M. Reidys at LANL

A sequential dynamical system consists of

A set of entities having state values

Local update functions governing state transitions

A dependency graph in which the entities interact

An update schedule which specifies how the local
functions are to be composed to generate a global
update function.
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SDS example

1 2

3 4

PSfrag replacements

f1
f2

f3 f4

Four binary entities

f1(x1, x2, x3, x4) = (x2 + x3, x2, x3, x4)

f2(x1, x2, x3, x4) = (x1, 0, x2, x3, x4)

f3(x1, x2, x3, x4) = (x1, x2, 1 + x3, x4)

f4(x1, x2, x3, x4) = (x1, x2, x3, x3x4)

F (x1, x2, x3, x4) = f1 ◦ f4 ◦ f2 ◦ f3
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f2(x1, x2, x3, x4) = (x1, 0, x2, x3, x4)
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1 2

43

PSfrag replacements

f1 f2

f3 f4

F (0, 0, 0, 0) = (1, 0, 1, 0)
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SDS observations

The SDS structure allows to prove important
theoretical results:

Combinatorial and algebraic aspects of SDS.
A sharp upper bound on the number of
different SDS obtained by rescheduling: the
number of acyclic orientations of the
underlying graph.

An upper bound on the number of
non-dynamically equivalent SDS, that is, SDS
with non-isomorphic state spaces.
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SDS observations (2)

Local functions have several constraints

Symmetric or quasi-symmetric in their inputs,
that is, invariant under permutation of their
inputs.

All vertices with the same degree have the
same local update function.

The update schedule is a permutation on the
number of entities. No capability of updating a
local function more than once.

SDS assumes a fixed underlying graph. In
applications the dependency graph frequently
varies over time.
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Finite Dynamical Systems
R. Laubenbacher, B. Pareigis

Let K = {0, 1}, and K
n the n-fold cartesian product

of K.

Let Li
n be the set of all functions f i : K

n → K
n

which only change the i-th coordinate.

f i(x) = (x1, . . . , xi−1, f
i
i (x), xi+1, . . . , xn)

A finite dynamical system is an element of the set
S of n-tuples of functions

S = {(f1, . . . , fn) | f i ∈ Li
n}
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Galois Correspondence

Theorem. There is a Galois correspondence between the power
set of S and the set G of subgraphs of the complete graph Kn on
the vertex set {1, . . . , n}

Lemma. Any function f : K
n → K can be represented as a

polynomial.

Theorem. There is an edge between vertex i and j in Φ(f) if and

only if xi does not divide any monomial of f
j
j and xj does not

divide any monomial of f i
i .

The graph Φ(f) encodes the dependency re-
lations among the local functions f i
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Example

f1(x1, x2, x3, x4) = (x2 + x3, x2, x3, x4)

f2(x1, x2, x3, x4) = (x1, 0, x2, x3, x4)

f3(x1, x2, x3, x4) = (x1, x2, 1 + x3, x4)

f4(x1, x2, x3, x4) = (x1, x2, x3, x3x4)
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Linearization

A system f = (f1, . . . , fn) : K
n −→ K

n is called
linear if all functions f i

i are K-linear polynomials.

Theorem. Let f = (f1, . . . , fn) : K
n −→ K

n be a system. Then

there exists a linear system lG = (l1, . . . , ln) : K
n −→ K

n such
that Φ(lG) = Φ(f).

The linear system lG corresponding to the
adjacency matrix of the complement of G is
called the linearization of the system f .
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linear if all functions f i

i are K-linear polynomials.

A linear system f = (f 1, . . . , fn) can be represented
by an (n × n)-matrix with entries in K.
P. Cull (1970) represented a Switching Net with a 2n × 2n-matrix
A, the function matrix, that has as its rows the products of the n

local functions.

The characteristic polynomial of A has the form
xk(xr1 + 1) · · · (xrs+1), where k is the number of transient
states and the r’s are the lenghts of the various cycles.

Behavior of a net obtained from the eigenvectors.
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Graph Equivalence

We say that (f1, . . . , fn), (g1, . . . , gn) ∈ S are
graph equivalent if and only if Φ((f 1 . . . , fn))

is isomorphic to Φ((g1, . . . , gn)).

Let Sn be the group of permutations on n elements. For any
(n× n)-matrix M and π ∈ Sn, πM is the (n× n)-matrix such that
(πM)ij = Mπ−1(i)π−1(j).

Theorem. Let f and g be two systems on K
n. f is graph

equivalent to g, that is, π(Φ(f)) = Φ(g) for some π ∈ Sn if and
only if π · MlΦ(f)

= MlΦ(g)
.
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Upper Bound for Sequential Systems

Let Wt be the set of all words on {1, . . . , n} of length
t.

Let f ∈ S, and π = (i1, . . . , it) ∈ Wt. Denote by fπ

the finite dynamical system given by

f it ◦ · · · ◦ f i1.

Let Hπ(f) be the graph on t vertices,
corresponding to i1, . . . , it. Then (va, vb) is an edge
in Hπ(f) if and only if

ia 6= ib and,
the edge (ia, ib) is not in Φ(f).
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Upper Bound Theorem

Theorem. Let f = (f1, . . . , fn) be a system of local functions on
K

n, and let FWt
(f) = {fπ | π ∈ Wt}. Then

|FWt
| ≤ |{Acyc(Hπ) | π ∈ Wt}| =

∑

π∈Wt

|{Acyc(Hπ)}|.

Observation. If π ∈ Sn, then

{Acyc(Hπ) : π ∈ Wn} = {Acyc(Φ(f))}.

Thus the upper bound for the number of
different SDS is recovered. This bound is
known to be sharp.
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Dynamically Equivalent Systems

Two maps F,G : K
n → K

n are dynamically
equivalent if there exists a bijection ϕ : K

n → K
n

such that
G = ϕ ◦ F ◦ ϕ−1
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Dynamically Equivalent Systems

Two maps F,G : K
n → K

n are dynamically
equivalent if there exists a bijection ϕ : K

n → K
n

such that
G = ϕ ◦ F ◦ ϕ−1

An upper bound for dynamically non-equivalent
SDS is known (Reidys). This upper bound relies
on the fact that conjugacy yields an SDS with the
same graph and local functions.
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Dynamically Equivalent Systems

Two maps F,G : K
n → K

n are dynamically
equivalent if there exists a bijection ϕ : K

n → K
n

such that
G = ϕ ◦ F ◦ ϕ−1

Let f = (0, x3, x2) : K
3 → K

3.

Φ(f) is the graph on three vertices 1, 2, 3 with
edges (1, 2), (1, 3).

Exactly two functionally non-equivalent systems
f3 ◦ f2 ◦ f1 and f1 ◦ f2 ◦ f3.
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Dynamically Equivalent Systems
(2)

The state spaces of f id and f1 ◦ f2 ◦ f3
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010 000
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Let ϕ = (213), then ϕ ◦ f id ◦ ϕ−1 has the state space
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110

010111

001

011

101
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