Classification of Finite Dynamical Systems

Luis D. Garcia, Abdul Jarrah, and Reinhard Laubenbacher

lgarcia@math.vt.edu

Virginia Tech

An important way to study many dynamical systems is to simulate them on a computer building a model for them.

- An important way to study many dynamical systems is to simulate them on a computer building a model for them.
- Need for a mathematical theory that addresses several theoretical issues that arise in the process of designing computer simulations

- An important way to study many dynamical systems is to simulate them on a computer building a model for them.
- Need for a mathematical theory that addresses several theoretical issues that arise in the process of designing computer simulations
 - What are the characteristics that any simulation of a given system should possess?

- An important way to study many dynamical systems is to simulate them on a computer building a model for them.
- Need for a mathematical theory that addresses several theoretical issues that arise in the process of designing computer simulations
 - What are the characteristics that any simulation of a given system should possess?
 - How do we know when two different models represent the same system?

- An important way to study many dynamical systems is to simulate them on a computer building a model for them.
- Need for a mathematical theory that addresses several theoretical issues that arise in the process of designing computer simulations
 - What are the characteristics that any simulation of a given system should possess?
 - How do we know when two different models represent the same system?
 - Can we find a more efficient simulation of a given system?

C. L. Barrett, H. S. Mortveit, C. M. Reidys at LANL

C. L. Barrett, H. S. Mortveit, C. M. Reidys at LANL

A sequential dynamical system consists of

A set of entities having state values

C. L. Barrett, H. S. Mortveit, C. M. Reidys at LANL

- A set of entities having state values
- Local update functions governing state transitions

C. L. Barrett, H. S. Mortveit, C. M. Reidys at LANL

- A set of entities having state values
- Local update functions governing state transitions
- A dependency graph in which the entities interact

C. L. Barrett, H. S. Mortveit, C. M. Reidys at LANL

- A set of entities having state values
- Local update functions governing state transitions
- A dependency graph in which the entities interact
- An update schedule which specifies how the local functions are to be composed to generate a global update function.

$\begin{array}{cccc} f_1 & f_2 \\ \hline 1 & 2 \\ \hline & 2 \\ \hline & 2 \\ \hline & 2 \\ \hline & 3 \\ \hline & 4 \\ f_3 & f_4 \end{array}$

Four binary entities

$$f_1(x_1, x_2, x_3, x_4) = (x_2 + x_3, x_2, x_3, x_4)$$

$$f_2(x_1, x_2, x_3, x_4) = (x_1, 0, x_2, x_3, x_4)$$

$$f_3(x_1, x_2, x_3, x_4) = (x_1, x_2, 1 + x_3, x_4)$$

$$f_4(x_1, x_2, x_3, x_4) = (x_1, x_2, x_3, x_3 x_4)$$

 f_2

2

f_1 $f_1(x_1, x_2, x_3, x_4) = (x_2 + x_3, x_2, x_3, x_4)$ 3

 $f_2(x_1, x_2, x_3, x_4) = (x_1, 0, x_2, x_3, x_4)$

Four binary entities

- $f_3(x_1, x_2, x_3, x_4) = (x_1, x_2, 1 + x_3, x_4)$
- $f_4(x_1, x_2, x_3, x_4) = (x_1, x_2, x_3, x_3 x_4)$
- $F(x_1, x_2, x_3, x_4) = f_1 \circ f_4 \circ f_2 \circ f_3$

Four binary entities

$$f_1(x_1, x_2, x_3, x_4) = (x_2 + x_3, x_2, x_3, x_4)$$

$$f_2(x_1, x_2, x_3, x_4) = (x_1, 0, x_2, x_3, x_4)$$

- $f_3(x_1, x_2, x_3, x_4) = (x_1, x_2, 1 + x_3, x_4)$
- $f_4(x_1, x_2, x_3, x_4) = (x_1, x_2, x_3, x_3 x_4)$
- $F(x_1, x_2, x_3, x_4) = f_1 \circ f_4 \circ f_2 \circ f_3$
- **•** Compute F(0, 0, 0, 0)

 $F(x_1, x_2, x_3, x_4) = f_1 \circ f_4 \circ f_2 \circ f_3$

 $F(x_1, x_2, x_3, x_4) = f_1 \circ f_4 \circ f_2 \circ f_3$

 $F(x_1, x_2, x_3, x_4) = f_1 \circ f_4 \circ f_2 \circ f_3$

$$F(0,0,0,0) = (1,0,1,0)$$

Virginia

Tech Tech

- The SDS structure allows to prove important theoretical results:
 - Combinatorial and algebraic aspects of SDS.

- The SDS structure allows to prove important theoretical results:
 - Combinatorial and algebraic aspects of SDS.
 - A sharp upper bound on the number of different SDS obtained by rescheduling: the number of acyclic orientations of the underlying graph.

- The SDS structure allows to prove important theoretical results:
 - Combinatorial and algebraic aspects of SDS.
 - A sharp upper bound on the number of different SDS obtained by rescheduling: the number of acyclic orientations of the underlying graph.
 - An upper bound on the number of non-dynamically equivalent SDS, that is, SDS with non-isomorphic state spaces.

SDS observations (2)

Local functions have several constraints

- Local functions have several constraints
 - Symmetric or quasi-symmetric in their inputs, that is, invariant under permutation of their inputs.

- Local functions have several constraints
 - Symmetric or quasi-symmetric in their inputs, that is, invariant under permutation of their inputs.
 - All vertices with the same degree have the same local update function.

- Local functions have several constraints
 - Symmetric or quasi-symmetric in their inputs, that is, invariant under permutation of their inputs.
 - All vertices with the same degree have the same local update function.
- The update schedule is a permutation on the number of entities. No capability of updating a local function more than once.

- Local functions have several constraints
 - Symmetric or quasi-symmetric in their inputs, that is, invariant under permutation of their inputs.
 - All vertices with the same degree have the same local update function.
- The update schedule is a permutation on the number of entities. No capability of updating a local function more than once.
- SDS assumes a fixed underlying graph. In applications the dependency graph frequently varies over time.

Finite Dynamical Systems

R. Laubenbacher, B. Pareigis

• Let $\mathbb{K} = \{0, 1\}$, and \mathbb{K}^n the *n*-fold cartesian product of \mathbb{K} .

Finite Dynamical Systems

R. Laubenbacher, B. Pareigis

- Let $\mathbb{K} = \{0, 1\}$, and \mathbb{K}^n the *n*-fold cartesian product of \mathbb{K} .
- Let L_n^i be the set of all functions $f^i : \mathbb{K}^n \to \mathbb{K}^n$ which only change the *i*-th coordinate.

$$f^{i}(x) = (x_1, \dots, x_{i-1}, f^{i}_{i}(x), x_{i+1}, \dots, x_n)$$

Finite Dynamical Systems

R. Laubenbacher, B. Pareigis

- Let K = {0,1}, and Kⁿ the n-fold cartesian product of K.
- Let L_n^i be the set of all functions $f^i : \mathbb{K}^n \to \mathbb{K}^n$ which only change the *i*-th coordinate.

$$f^{i}(x) = (x_{1}, \dots, x_{i-1}, f^{i}_{i}(x), x_{i+1}, \dots, x_{n})$$

A finite dynamical system is an element of the set
 S of n-tuples of functions

$$\mathcal{S} = \{ (f^1, \dots, f^n) \mid f^i \in L_n^i \}$$

Theorem. There is a Galois correspondence between the power set of S and the set G of subgraphs of the complete graph K_n on the vertex set $\{1, \ldots, n\}$

Theorem. There is a Galois correspondence between the power set of S and the set G of subgraphs of the complete graph K_n on the vertex set $\{1, \ldots, n\}$ **Lemma.** Any function $f : \mathbb{K}^n \to \mathbb{K}$ can be represented as a polynomial.

Theorem. There is a Galois correspondence between the power set of S and the set G of subgraphs of the complete graph K_n on the vertex set $\{1, \ldots, n\}$

Lemma. Any function $f : \mathbb{K}^n \to \mathbb{K}$ can be represented as a polynomial.

Theorem. There is an edge between vertex *i* and *j* in $\Phi(f)$ if and only if x_i does not divide any monomial of f_j^j and x_j does not divide any monomial of f_i^i .

Theorem. There is a Galois correspondence between the power set of S and the set G of subgraphs of the complete graph K_n on the vertex set $\{1, \ldots, n\}$

Lemma. Any function $f : \mathbb{K}^n \to \mathbb{K}$ can be represented as a polynomial.

Theorem. There is an edge between vertex *i* and *j* in $\Phi(f)$ if and only if x_i does not divide any monomial of f_j^j and x_j does not divide any monomial of f_i^j .

The graph $\Phi(f)$ encodes the dependency relations among the local functions f^i

Example

$$f_1(x_1, x_2, x_3, x_4) = (x_2 + x_3, x_2, x_3, x_4)$$

$$f_2(x_1, x_2, x_3, x_4) = (x_1, 0, x_2, x_3, x_4)$$

$$f_3(x_1, x_2, x_3, x_4) = (x_1, x_2, 1 + x_3, x_4)$$

$$f_4(x_1, x_2, x_3, x_4) = (x_1, x_2, x_3, x_3 x_4)$$

$$f_1(x_1, x_2, x_3, x_4) = (x_2 + x_3, x_2, x_3, x_4)$$

$$f_2(x_1, x_2, x_3, x_4) = (x_1, 0, x_2, x_3, x_4)$$

$$f_3(x_1, x_2, x_3, x_4) = (x_1, x_2, 1 + x_3, x_4)$$

$$f_4(x_1, x_2, x_3, x_4) = (x_1, x_2, x_3, x_3 x_4)$$

$$f_1(x_1, x_2, x_3, x_4) = (x_2 + x_3, x_2, x_3, x_4)$$

$$f_2(x_1, x_2, x_3, x_4) = (x_1, 0, x_2, x_3, x_4)$$

$$f_3(x_1, x_2, x_3, x_4) = (x_1, x_2, 1 + x_3, x_4)$$

$$f_4(x_1, x_2, x_3, x_4) = (x_1, x_2, x_3, x_3 x_4)$$

$$f_1(x_1, x_2, x_3, x_4) = (x_2 + x_3, x_2, x_3, x_4)$$

$$f_2(x_1, x_2, x_3, x_4) = (x_1, 0, x_2, x_3, x_4)$$

$$f_3(x_1, x_2, x_3, x_4) = (x_1, x_2, 1 + x_3, x_4)$$

$$f_4(x_1, x_2, x_3, x_4) = (x_1, x_2, x_3, x_3 x_4)$$

- A system $f = (f^1, \dots, f^n) : \mathbb{K}^n \longrightarrow \mathbb{K}^n$ is called linear if all functions f_i^i are \mathbb{K} -linear polynomials.
- ▲ A linear system $f = (f^1, \ldots, f^n)$ can be represented by an $(n \times n)$ -matrix with entries in K.
 - P. Cull (1970) represented a Switching Net with a $2^n \times 2^n$ -matrix A, the function matrix, that has as its rows the products of the n local functions.
 - The characteristic polynomial of A has the form $x^k(x^{r_1}+1)\cdots(x^{r_s+1})$, where k is the number of transient states and the r's are the lenghts of the various cycles.
 - Behavior of a net obtained from the eigenvectors.

• A system $f = (f^1, \dots, f^n) : \mathbb{K}^n \longrightarrow \mathbb{K}^n$ is called linear if all functions f_i^i are \mathbb{K} -linear polynomials.

• A system $f = (f^1, \dots, f^n) : \mathbb{K}^n \longrightarrow \mathbb{K}^n$ is called linear if all functions f_i^i are \mathbb{K} -linear polynomials.

• A system $f = (f^1, \dots, f^n) : \mathbb{K}^n \longrightarrow \mathbb{K}^n$ is called linear if all functions f_i^i are \mathbb{K} -linear polynomials.

• A system $f = (f^1, \dots, f^n) : \mathbb{K}^n \longrightarrow \mathbb{K}^n$ is called linear if all functions f_i^i are \mathbb{K} -linear polynomials.

• A system $f = (f^1, \dots, f^n) : \mathbb{K}^n \longrightarrow \mathbb{K}^n$ is called linear if all functions f_i^i are \mathbb{K} -linear polynomials.

Lemma. Let *G* be a graph on *n* vertices. Then there exists a linear system $l_G = (l^1, \ldots, l^n) : \mathbb{K}^n \longrightarrow \mathbb{K}^n$ such that $\Phi(l_G) = G$.

Theorem. Let $f = (f^1, \ldots, f^n) : \mathbb{K}^n \longrightarrow \mathbb{K}^n$ be a system. Then there exists a linear system $l_G = (l^1, \ldots, l^n) : \mathbb{K}^n \longrightarrow \mathbb{K}^n$ such that $\Phi(l_G) = \Phi(f)$.

• A system $f = (f^1, \dots, f^n) : \mathbb{K}^n \longrightarrow \mathbb{K}^n$ is called linear if all functions f_i^i are \mathbb{K} -linear polynomials.

Lemma. Let *G* be a graph on *n* vertices. Then there exists a linear system $l_G = (l^1, \ldots, l^n) : \mathbb{K}^n \longrightarrow \mathbb{K}^n$ such that $\Phi(l_G) = G$.

Theorem. Let $f = (f^1, \ldots, f^n) : \mathbb{K}^n \longrightarrow \mathbb{K}^n$ be a system. Then there exists a linear system $l_G = (l^1, \ldots, l^n) : \mathbb{K}^n \longrightarrow \mathbb{K}^n$ such that $\Phi(l_G) = \Phi(f)$.

The linear system l_G corresponding to the adjacency matrix of the complement of *G* is called the linearization of the system *f*.

We say that $(f^1, \ldots, f^n), (g^1, \ldots, g^n) \in S$ are graph equivalent if and only if $\Phi((f^1, \ldots, f^n))$ is isomorphic to $\Phi((g^1, \ldots, g^n))$.

We say that $(f^1, \ldots, f^n), (g^1, \ldots, g^n) \in S$ are graph equivalent if and only if $\Phi((f^1, \ldots, f^n))$ is isomorphic to $\Phi((g^1, \ldots, g^n))$.

Let S_n be the group of permutations on n elements. For any $(n \times n)$ -matrix M and $\pi \in S_n$, πM is the $(n \times n)$ -matrix such that $(\pi M)_{ij} = M_{\pi^{-1}(i)\pi^{-1}(j)}$.

We say that $(f^1, \ldots, f^n), (g^1, \ldots, g^n) \in S$ are graph equivalent if and only if $\Phi((f^1, \ldots, f^n))$ is isomorphic to $\Phi((g^1, \ldots, g^n))$.

Let S_n be the group of permutations on n elements. For any $(n \times n)$ -matrix M and $\pi \in S_n$, πM is the $(n \times n)$ -matrix such that $(\pi M)_{ij} = M_{\pi^{-1}(i)\pi^{-1}(j)}$.

Theorem. Let f and g be two systems on \mathbb{K}^n . f is graph equivalent to g, that is, $\pi(\Phi(f)) = \Phi(g)$ for some $\pi \in S_n$ if and only if $\pi \cdot M_{l_{\Phi(f)}} = M_{l_{\Phi(g)}}$.

Upper Bound for Sequential Systems

- Let W_t be the set of all words on $\{1, \ldots, n\}$ of length t.
- Let $f \in S$, and $\pi = (i_1, \dots, i_t) \in W_t$. Denote by f^{π} the finite dynamical system given by

$$f^{i_t} \circ \cdots \circ f^{i_1}.$$

- Let $H_{\pi}(f)$ be the graph on t vertices, corresponding to i_1, \ldots, i_t . Then (v_a, v_b) is an edge in $H_{\pi}(f)$ if and only if
 - $i_a \neq i_b$ and,
 - the edge (i_a, i_b) is not in $\Phi(f)$.

Theorem. Let $f = (f^1, \ldots, f^n)$ be a system of local functions on \mathbb{K}^n , and let $F_{W_t}(f) = \{f^{\pi} \mid \pi \in W_t\}$. Then

$$|F_{W_t}| \le |\{\operatorname{Acyc}(H_{\pi}) \mid \pi \in W_t\}| = \sum_{\pi \in W_t} |\{\operatorname{Acyc}(H_{\pi})\}|.$$

Theorem. Let $f = (f^1, \ldots, f^n)$ be a system of local functions on \mathbb{K}^n , and let $F_{W_t}(f) = \{f^{\pi} \mid \pi \in W_t\}$. Then

$$|F_{W_t}| \le |\{\operatorname{Acyc}(H_{\pi}) \mid \pi \in W_t\}| = \sum_{\pi \in W_t} |\{\operatorname{Acyc}(H_{\pi})\}|.$$

Observation. If $\pi \in S_n$, then $\{\operatorname{Acyc}(H_{\pi}) : \pi \in W_n\} = \{\operatorname{Acyc}(\overline{\Phi(f)})\}.$

Theorem. Let $f = (f^1, \ldots, f^n)$ be a system of local functions on \mathbb{K}^n , and let $F_{W_t}(f) = \{f^{\pi} \mid \pi \in W_t\}$. Then

$$|F_{W_t}| \le |\{\operatorname{Acyc}(H_{\pi}) \mid \pi \in W_t\}| = \sum_{\pi \in W_t} |\{\operatorname{Acyc}(H_{\pi})\}|.$$

Observation. If $\pi \in S_n$, then $\{\operatorname{Acyc}(H_{\pi}) : \pi \in W_n\} = \{\operatorname{Acyc}(\overline{\Phi(f)})\}.$

Thus the upper bound for the number of different SDS is recovered. This bound is known to be sharp.

Two maps $F, G : \mathbb{K}^n \to \mathbb{K}^n$ are dynamically equivalent if there exists a bijection $\varphi : \mathbb{K}^n \to \mathbb{K}^n$ such that

$$G = \varphi \circ F \circ \varphi^{-1}$$

Two maps $F, G : \mathbb{K}^n \to \mathbb{K}^n$ are dynamically equivalent if there exists a bijection $\varphi : \mathbb{K}^n \to \mathbb{K}^n$ such that

$$G = \varphi \circ F \circ \varphi^{-1}$$

An upper bound for dynamically non-equivalent SDS is known (Reidys). This upper bound relies on the fact that conjugacy yields an SDS with the same graph and local functions.

Two maps $F, G : \mathbb{K}^n \to \mathbb{K}^n$ are dynamically equivalent if there exists a bijection $\varphi : \mathbb{K}^n \to \mathbb{K}^n$ such that

$$G = \varphi \circ F \circ \varphi^{-1}$$

- Let $f = (0, x_3, x_2) : \mathbb{K}^3 \to \mathbb{K}^3$.
- $\Phi(f)$ is the graph on three vertices 1, 2, 3 with edges (1, 2), (1, 3).
- Exactly two functionally non-equivalent systems $f^3 \circ f^2 \circ f^1$ and $f^1 \circ f^2 \circ f^3$.

(2)

(2)

• Let $\varphi = (213)$, then $\varphi \circ f^{id} \circ \varphi^{-1}$ has the state space

(2)

• Let $\varphi = (213)$, then $\varphi \circ f^{id} \circ \varphi^{-1}$ has the state space

