# Classification of Finite Dynamical Systems 

Luis D. Garcia, Abdul Jarrah, and Reinhard Laubenbacher

lgarcia@math.vt.edu

Virginia Tech

## Computer Simulations

- An important way to study many dynamical systems is to simulate them on a computer building a model for them.


## Computer Simulations

- An important way to study many dynamical systems is to simulate them on a computer building a model for them.
- Need for a mathematical theory that addresses several theoretical issues that arise in the process of designing computer simulations


## Computer Simulations

- An important way to study many dynamical systems is to simulate them on a computer building a model for them.
- Need for a mathematical theory that addresses several theoretical issues that arise in the process of designing computer simulations
- What are the characteristics that any simulation of a given system should possess?


## Computer Simulations

- An important way to study many dynamical systems is to simulate them on a computer building a model for them.
- Need for a mathematical theory that addresses several theoretical issues that arise in the process of designing computer simulations
- What are the characteristics that any simulation of a given system should possess?
- How do we know when two different models represent the same system?


## Computer Simulations

- An important way to study many dynamical systems is to simulate them on a computer building a model for them.
- Need for a mathematical theory that addresses several theoretical issues that arise in the process of designing computer simulations
- What are the characteristics that any simulation of a given system should possess?
- How do we know when two different models represent the same system?
- Can we find a more efficient simulation of a given system?


## Sequential Dynamical Systems

C. L. Barrett, H. S. Mortveit, C. M. Reidys at LANL

A sequential dynamical system consists of

## Sequential Dynamical Systems

C. L. Barrett, H. S. Mortveit, C. M. Reidys at LANL

A sequential dynamical system consists of

- A set of entities having state values


## Sequential Dynamical Systems

C. L. Barrett, H. S. Mortveit, C. M. Reidys at LANL

A sequential dynamical system consists of

- A set of entities having state values
- Local update functions governing state transitions


## Sequential Dynamical Systems

C. L. Barrett, H. S. Mortveit, C. M. Reidys at LANL

A sequential dynamical system consists of

- A set of entities having state values
- Local update functions governing state transitions
- A dependency graph in which the entities interact


## Sequential Dynamical Systems

C. L. Barrett, H. S. Mortveit, C. M. Reidys at LANL

A sequential dynamical system consists of

- A set of entities having state values
- Local update functions governing state transitions
- A dependency graph in which the entities interact
- An update schedule which specifies how the local functions are to be composed to generate a global update function.


## SDS example



Virginia
[1] Tech

## SDS example

## - Four binary entities



## SDS example

## - Four binary entities

- $f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{2}+x_{3}, x_{2}, x_{3}, x_{4}\right)$
- $f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, 0, x_{2}, x_{3}, x_{4}\right)$
- $f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, 1+x_{3}, x_{4}\right)$

- $f_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, x_{3}, x_{3} x_{4}\right)$


## SDS example

## - Four binary entities

- $f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{2}+x_{3}, x_{2}, x_{3}, x_{4}\right)$
- $f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, 0, x_{2}, x_{3}, x_{4}\right)$
- $f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, 1+x_{3}, x_{4}\right)$

- $f_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, x_{3}, x_{3} x_{4}\right)$
- $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=f_{1} \circ f_{4} \circ f_{2} \circ f_{3}$


## SDS example

## - Four binary entities

- $f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{2}+x_{3}, x_{2}, x_{3}, x_{4}\right)$
- $f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, 0, x_{2}, x_{3}, x_{4}\right)$
- $f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, 1+x_{3}, x_{4}\right)$

- $f_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, x_{3}, x_{3} x_{4}\right)$
- $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=f_{1} \circ f_{4} \circ f_{2} \circ f_{3}$
- Compute $F(0,0,0,0)$


## SDS example

> Four binary entities - $f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{2}+x_{3}, x_{2}, x_{3}, x_{4}\right)$ $f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, 0, x_{2}, x_{3}, x_{4}\right)$ $f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, 1+x_{3}, x_{4}\right)$  $f_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, x_{3}, x_{3} x_{4}\right)$  $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=f_{1} \circ f_{4} \circ f_{2} \circ f_{3}$


## SDS example

## - Four binary entities

- $f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{2}+x_{3}, x_{2}, x_{3}, x_{4}\right)$
- $f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, 0, x_{2}, x_{3}, x_{4}\right)$
- $f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, 1+x_{3}, x_{4}\right)$

- $f_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, x_{3}, x_{3} x_{4}\right)$
- $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=f_{1} \circ f_{4} \circ f_{2} \circ f_{3}$


## SDS example

## - Four binary entities

- $f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{2}+x_{3}, x_{2}, x_{3}, x_{4}\right)$
- $f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, 0, x_{2}, x_{3}, x_{4}\right)$
- $f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, 1+x_{3}, x_{4}\right)$
- $f_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, x_{3}, x_{3} x_{4}\right)$

- $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=f_{1} \circ f_{4} \circ f_{2} \circ f_{3}$
- $F(0,0,0,0)=(1,0,1,0)$


## SDS observations

- The SDS structure allows to prove important theoretical results:


## SDS observations

- The SDS structure allows to prove important theoretical results:
- Combinatorial and algebraic aspects of SDS.


## SDS observations

- The SDS structure allows to prove important theoretical results:
- Combinatorial and algebraic aspects of SDS.
- A sharp upper bound on the number of different SDS obtained by rescheduling: the number of acyclic orientations of the underlying graph.


## SDS observations

- The SDS structure allows to prove important theoretical results:
- Combinatorial and algebraic aspects of SDS.
- A sharp upper bound on the number of different SDS obtained by rescheduling: the number of acyclic orientations of the underlying graph.
- An upper bound on the number of non-dynamically equivalent SDS, that is, SDS with non-isomorphic state spaces.


## SDS observations

Local functions have several constraints

## SDS observations

- Local functions have several constraints
- Symmetric or quasi-symmetric in their inputs, that is, invariant under permutation of their inputs.


## SDS observations

- Local functions have several constraints
- Symmetric or quasi-symmetric in their inputs, that is, invariant under permutation of their inputs.
- All vertices with the same degree have the same local update function.


## SDS observations

- Local functions have several constraints
- Symmetric or quasi-symmetric in their inputs, that is, invariant under permutation of their inputs.
- All vertices with the same degree have the same local update function.
- The update schedule is a permutation on the number of entities. No capability of updating a local function more than once.


## SDS observations

- Local functions have several constraints
- Symmetric or quasi-symmetric in their inputs, that is, invariant under permutation of their inputs.
- All vertices with the same degree have the same local update function.
- The update schedule is a permutation on the number of entities. No capability of updating a local function more than once.
- SDS assumes a fixed underlying graph. In applications the dependency graph frequently varies over time.


# Finite Dynamical Systems 

R. Laubenbacher, B. Pareigis

- Let $\mathbb{K}=\{0,1\}$, and $\mathbb{K}^{n}$ the $n$-fold cartesian product of $\mathbb{K}$.


## Finite Dynamical Systems

R. Laubenbacher, B. Pareigis

- Let $\mathbb{K}=\{0,1\}$, and $\mathbb{K}^{n}$ the $n$-fold cartesian product of $\mathbb{K}$.
- Let $L_{n}^{i}$ be the set of all functions $f^{i}: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ which only change the $i$-th coordinate.

$$
f^{i}(x)=\left(x_{1}, \ldots, x_{i-1}, f_{i}^{i}(x), x_{i+1}, \ldots, x_{n}\right)
$$

## Finite Dynamical Systems

R. Laubenbacher, B. Pareigis

- Let $\mathbb{K}=\{0,1\}$, and $\mathbb{K}^{n}$ the $n$-fold cartesian product of $\mathbb{K}$.
- Let $L_{n}^{i}$ be the set of all functions $f^{i}: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ which only change the $i$-th coordinate.

$$
f^{i}(x)=\left(x_{1}, \ldots, x_{i-1}, f_{i}^{i}(x), x_{i+1}, \ldots, x_{n}\right)
$$

- A finite dynamical system is an element of the set $\mathcal{S}$ of $n$-tuples of functions

$$
\mathcal{S}=\left\{\left(f^{1}, \ldots, f^{n}\right) \mid f^{i} \in L_{n}^{i}\right\}
$$

## Galois Correspondence

Theorem. There is a Galois correspondence between the power set of $\mathcal{S}$ and the set $\mathcal{G}$ of subgraphs of the complete graph $K_{n}$ on the vertex set $\{1, \ldots, n\}$

## Galois Correspondence

Theorem. There is a Galois correspondence between the power set of $\mathcal{S}$ and the set $\mathcal{G}$ of subgraphs of the complete graph $K_{n}$ on the vertex set $\{1, \ldots, n\}$
Lemma. Any function $f: \mathbb{K}^{n} \rightarrow \mathbb{K}$ can be represented as a polynomial.

## Galois Correspondence

Theorem. There is a Galois correspondence between the power set of $\mathcal{S}$ and the set $\mathcal{G}$ of subgraphs of the complete graph $K_{n}$ on the vertex set $\{1, \ldots, n\}$
Lemma. Any function $f: \mathbb{K}^{n} \rightarrow \mathbb{K}$ can be represented as a polynomial.
Theorem. There is an edge between vertex $i$ and $j$ in $\Phi(f)$ if and only if $x_{i}$ does not divide any monomial of $f_{j}^{j}$ and $x_{j}$ does not divide any monomial of $f_{i}^{i}$.

## Galois Correspondence

Theorem. There is a Galois correspondence between the power set of $\mathcal{S}$ and the set $\mathcal{G}$ of subgraphs of the complete graph $K_{n}$ on the vertex set $\{1, \ldots, n\}$
Lemma. Any function $f: \mathbb{K}^{n} \rightarrow \mathbb{K}$ can be represented as a polynomial.
Theorem. There is an edge between vertex $i$ and $j$ in $\Phi(f)$ if and only if $x_{i}$ does not divide any monomial of $f_{j}^{j}$ and $x_{j}$ does not divide any monomial of $f_{i}^{i}$.

## The graph $\Phi(f)$ encodes the dependency relations among the local functions $f^{i}$

## Example

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{2}+x_{3}, x_{2}, x_{3}, x_{4}\right) \\
& f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, 0, x_{2}, x_{3}, x_{4}\right) \\
& f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, 1+x_{3}, x_{4}\right) \\
& f_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, x_{3}, x_{3} x_{4}\right)
\end{aligned}
$$

## Example

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{2}+x_{3}, x_{2}, x_{3}, x_{4}\right) \\
& f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, 0, x_{2}, x_{3}, x_{4}\right) \\
& f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, 1+x_{3}, x_{4}\right) \\
& f_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, x_{3}, x_{3} x_{4}\right)
\end{aligned}
$$



## Example

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{2}+x_{3}, x_{2}, x_{3}, x_{4}\right) \\
& f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, 0, x_{2}, x_{3}, x_{4}\right) \\
& f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, 1+x_{3}, x_{4}\right) \\
& f_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, x_{3}, x_{3} x_{4}\right)
\end{aligned}
$$




## Example

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{2}+x_{3}, x_{2}, x_{3}, x_{4}\right) \\
& f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, 0, x_{2}, x_{3}, x_{4}\right) \\
& f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, 1+x_{3}, x_{4}\right) \\
& f_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, x_{3}, x_{3} x_{4}\right)
\end{aligned}
$$




## Linearization

- A system $f=\left(f^{1}, \ldots, f^{n}\right): \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ is called linear if all functions $f_{i}^{i}$ are $\mathbb{K}$-linear polynomials.


## Linearization

- A system $f=\left(f^{1}, \ldots, f^{n}\right): \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ is called linear if all functions $f_{i}^{i}$ are $\mathbb{K}$-linear polynomials.
- A linear system $f=\left(f^{1}, \ldots, f^{n}\right)$ can be represented by an $(n \times n)$-matrix with entries in $\mathbb{K}$.
- P. Cull (1970) represented a Switching Net with a $2^{n} \times 2^{n}$-matrix $A$, the function matrix, that has as its rows the products of the $n$ local functions.
- The characteristic polynomial of $A$ has the form $x^{k}\left(x^{r_{1}}+1\right) \cdots\left(x^{r_{s}+1}\right)$, where $k$ is the number of transient states and the $r$ 's are the lenghts of the various cycles.
- Behavior of a net obtained from the eigenvectors.


## Linearization

- A system $f=\left(f^{1}, \ldots, f^{n}\right): \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ is called linear if all functions $f_{i}^{i}$ are $\mathbb{K}$-linear polynomials.

Lemma. Let $G$ be a graph on $n$ vertices. Then there exists a linear system $l_{G}=\left(l^{1}, \ldots, l^{n}\right): \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ such that $\Phi\left(l_{G}\right)=G$.

## Linearization

- A system $f=\left(f^{1}, \ldots, f^{n}\right): \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ is called linear if all functions $f_{i}^{i}$ are $\mathbb{K}$-linear polynomials.

Lemma. Let $G$ be a graph on $n$ vertices. Then there exists a linear system $l_{G}=\left(l^{1}, \ldots, l^{n}\right): \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ such that $\Phi\left(l_{G}\right)=G$.


## Linearization

- A system $f=\left(f^{1}, \ldots, f^{n}\right): \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ is called linear if all functions $f_{i}^{i}$ are $\mathbb{K}$-linear polynomials.

Lemma. Let $G$ be a graph on $n$ vertices. Then there exists a linear system $l_{G}=\left(l^{1}, \ldots, l^{n}\right): \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ such that $\Phi\left(l_{G}\right)=G$.


$$
\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

## Linearization

- A system $f=\left(f^{1}, \ldots, f^{n}\right): \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ is called linear if all functions $f_{i}^{i}$ are $\mathbb{K}$-linear polynomials.

Lemma. Let $G$ be a graph on $n$ vertices. Then there exists a linear system $l_{G}=\left(l^{1}, \ldots, l^{n}\right): \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ such that $\Phi\left(l_{G}\right)=G$.


## Linearization

- A system $f=\left(f^{1}, \ldots, f^{n}\right): \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ is called linear if all functions $f_{i}^{i}$ are $\mathbb{K}$-linear polynomials.

Lemma. Let $G$ be a graph on $n$ vertices. Then there exists a linear system $l_{G}=\left(l^{1}, \ldots, l^{n}\right): \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ such that $\Phi\left(l_{G}\right)=G$.
Theorem. Let $f=\left(f^{1}, \ldots, f^{n}\right): \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ be a system. Then there exists a linear system $l_{G}=\left(l^{1}, \ldots, l^{n}\right): \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ such that $\Phi\left(l_{G}\right)=\Phi(f)$.

## Linearization

- A system $f=\left(f^{1}, \ldots, f^{n}\right): \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ is called linear if all functions $f_{i}^{i}$ are $\mathbb{K}$-linear polynomials.

Lemma. Let $G$ be a graph on $n$ vertices. Then there exists a linear system $l_{G}=\left(l^{1}, \ldots, l^{n}\right): \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ such that $\Phi\left(l_{G}\right)=G$.
Theorem. Let $f=\left(f^{1}, \ldots, f^{n}\right): \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ be a system. Then there exists a linear system $l_{G}=\left(l^{1}, \ldots, l^{n}\right): \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ such that $\Phi\left(l_{G}\right)=\Phi(f)$.

The linear system $l_{G}$ corresponding to the adjacency matrix of the complement of $G$ is called the linearization of the system $f$.

## Graph Equivalence

We say that $\left(f^{1}, \ldots, f^{n}\right),\left(g^{1}, \ldots, g^{n}\right) \in \mathcal{S}$ are graph equivalent if and only if $\Phi\left(\left(f^{1} \ldots, f^{n}\right)\right)$ is isomorphic to $\Phi\left(\left(g^{1}, \ldots, g^{n}\right)\right)$.

## Graph Equivalence

We say that $\left(f^{1}, \ldots, f^{n}\right),\left(g^{1}, \ldots, g^{n}\right) \in \mathcal{S}$ are graph equivalent if and only if $\Phi\left(\left(f^{1} \ldots, f^{n}\right)\right)$ is isomorphic to $\Phi\left(\left(g^{1}, \ldots, g^{n}\right)\right)$.

Let $S_{n}$ be the group of permutations on $n$ elements. For any $(n \times n)$-matrix $M$ and $\pi \in S_{n}, \pi M$ is the $(n \times n)$-matrix such that $(\pi M)_{i j}=M_{\pi^{-1}(i) \pi^{-1}(j)}$.

## Graph Equivalence

We say that $\left(f^{1}, \ldots, f^{n}\right),\left(g^{1}, \ldots, g^{n}\right) \in \mathcal{S}$ are graph equivalent if and only if $\Phi\left(\left(f^{1} \ldots, f^{n}\right)\right)$ is isomorphic to $\Phi\left(\left(g^{1}, \ldots, g^{n}\right)\right)$.

Let $S_{n}$ be the group of permutations on $n$ elements. For any $(n \times n)$-matrix $M$ and $\pi \in S_{n}, \pi M$ is the $(n \times n)$-matrix such that $(\pi M)_{i j}=M_{\pi^{-1}(i) \pi^{-1}(j)}$.

Theorem. Let $f$ and $g$ be two systems on $\mathbb{K}^{n}$. $f$ is graph equivalent to $g$, that is, $\pi(\Phi(f))=\Phi(g)$ for some $\pi \in S_{n}$ if and only if $\pi \cdot M_{l_{\Phi(f)}}=M_{l_{\Phi(g)}}$.

## Upper Bound for Sequential Systems

- Let $W_{t}$ be the set of all words on $\{1, \ldots, n\}$ of length $t$.
- Let $f \in \mathcal{S}$, and $\pi=\left(i_{1}, \ldots, i_{t}\right) \in W_{t}$. Denote by $f^{\pi}$ the finite dynamical system given by

$$
f^{i_{t}} \circ \ldots \circ f^{i_{1}} .
$$

- Let $H_{\pi}(f)$ be the graph on $t$ vertices, corresponding to $i_{1}, \ldots, i_{t}$. Then $\left(v_{a}, v_{b}\right)$ is an edge in $H_{\pi}(f)$ if and only if
- $i_{a} \neq i_{b}$ and,
- the edge $\left(i_{a}, i_{b}\right)$ is not in $\Phi(f)$.


## Upper Bound Theorem

Theorem. Let $f=\left(f^{1}, \ldots, f^{n}\right)$ be a system of local functions on $\mathbb{K}^{n}$, and let $F_{W_{t}}(f)=\left\{f^{\pi} \mid \pi \in W_{t}\right\}$. Then

$$
\left|F_{W_{t}}\right| \leq\left|\left\{\operatorname{Acyc}\left(H_{\pi}\right) \mid \pi \in W_{t}\right\}\right|=\sum_{\pi \in W_{t}}\left|\left\{\operatorname{Acyc}\left(H_{\pi}\right)\right\}\right| .
$$

## Upper Bound Theorem

Theorem. Let $f=\left(f^{1}, \ldots, f^{n}\right)$ be a system of local functions on $\mathbb{K}^{n}$, and let $F_{W_{t}}(f)=\left\{f^{\pi} \mid \pi \in W_{t}\right\}$. Then

$$
\left|F_{W_{t}}\right| \leq\left|\left\{\operatorname{Acyc}\left(H_{\pi}\right) \mid \pi \in W_{t}\right\}\right|=\sum_{\pi \in W_{t}}\left|\left\{\operatorname{Acyc}\left(H_{\pi}\right)\right\}\right|
$$

Observation. If $\pi \in S_{n}$, then
$\left\{\operatorname{Acyc}\left(H_{\pi}\right): \pi \in W_{n}\right\}=\{\operatorname{Acyc}(\overline{\Phi(f)})\}$.

## Upper Bound Theorem

Theorem. Let $f=\left(f^{1}, \ldots, f^{n}\right)$ be a system of local functions on $\mathbb{K}^{n}$, and let $F_{W_{t}}(f)=\left\{f^{\pi} \mid \pi \in W_{t}\right\}$. Then

$$
\left|F_{W_{t}}\right| \leq\left|\left\{\operatorname{Acyc}\left(H_{\pi}\right) \mid \pi \in W_{t}\right\}\right|=\sum_{\pi \in W_{t}}\left|\left\{\operatorname{Acyc}\left(H_{\pi}\right)\right\}\right|
$$

Observation. If $\pi \in S_{n}$, then $\left\{\operatorname{Acyc}\left(H_{\pi}\right): \pi \in W_{n}\right\}=\{\operatorname{Acyc}(\overline{\Phi(f)})\}$.

## Thus the upper bound for the number of different SDS is recovered. This bound is known to be sharp.

## Dynamically Equivalent Systems

- Two maps $F, G: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ are dynamically equivalent if there exists a bijection $\varphi: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ such that

$$
G=\varphi \circ F \circ \varphi^{-1}
$$

## Dynamically Equivalent Systems

- Two maps $F, G: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ are dynamically equivalent if there exists a bijection $\varphi: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ such that

$$
G=\varphi \circ F \circ \varphi^{-1}
$$

- An upper bound for dynamically non-equivalent SDS is known (Reidys). This upper bound relies on the fact that conjugacy yields an SDS with the same graph and local functions.


## Dynamically Equivalent Systems

- Two maps $F, G: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ are dynamically equivalent if there exists a bijection $\varphi: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ such that

$$
G=\varphi \circ F \circ \varphi^{-1}
$$

- Let $f=\left(0, x_{3}, x_{2}\right): \mathbb{K}^{3} \rightarrow \mathbb{K}^{3}$.
- $\Phi(f)$ is the graph on three vertices $1,2,3$ with edges (1,2), (1,3).
- Exactly two functionally non-equivalent systems $f^{3} \circ f^{2} \circ f^{1}$ and $f^{1} \circ f^{2} \circ f^{3}$.


## Dynamically Equivalent Systems

(2)

- The state spaces of $f^{i d}$ and $f^{1} \circ f^{2} \circ f^{3}$



## Dynamically Equivalent Systems

(2)

- The state spaces of $f^{i d}$ and $f^{1} \circ f^{2} \circ f^{3}$

- Let $\varphi=(213)$, then $\varphi \circ f^{i d} \circ \varphi^{-1}$ has the state space


## Dynamically Equivalent Systems

- The state spaces of $f^{i d}$ and $f^{1} \circ f^{2} \circ f^{3}$

- Let $\varphi=(213)$, then $\varphi \circ f^{i d} \circ \varphi^{-1}$ has the state space


