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Abstract

For an ancestral graph with four vertices, we show that the associated binary

model exhibits different properties than the previously studied Gaussian analog. The

Gaussian likelihood function may be multimodal, whereas the likelihood function of

the binary model is guaranteed to be unimodal. Canonical hidden variable models

associated with ancestral graph models impose additional polynomial constraints

of non-independence type in the binary case, but no additional constraints in the

Gaussian case.
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1 Introduction

In graphical modelling, random variables are identified with the vertices of a graph and,

via so-called Markov properties, the edges in the graph encode a pattern of probabilistic
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independences used to define a statistical model (Lauritzen, 1996). Graphical models

and Bayesian networks in particular have found wide-spread application (e.g. Friedman,

2004). In many applications, interpretation of the directed graph found by Bayesian

network model selection is desired but complicated by the fact that effects, which ap-

pear to be of causal nature, may be induced by hidden (unobserved) variables (Pearl,

2000; Spirtes et al., 2000). Ancestral graphs (Richardson & Spirtes, 2002) generalize

the directed acyclic graphs (DAGs) that underlie Bayesian networks and may feature

directed, undirected and bi-directed edges. A richer class of graphs, ancestral graphs can

encode any conditional independence structure that may arise from a Bayesian network

with hidden variables. Hence, they provide means to guard against misinterpretation in-

duced by assuming absence of influential hidden variables (Richardson & Spirtes, 2003).

We note that the classes of summary graphs (Cox & Wermuth, 1996) and MC-graphs

(Koster, 2002, 1999) achieve the same goal, however contain ancestral graphs as a strict

subclass (Richardson & Spirtes, 2002, §9).

For Gaussian ancestral graph models, i.e. all variables follow a joint multivariate

normal distribution, Richardson & Spirtes (2002, §8) provide a parameterization and

maximum likelihood (ML) estimates can be computed using iterative conditional fitting

(Drton & Richardson, 2003, 2004b). For ancestral graph models for discrete random

variables, however, statistical methodology has not yet been developed; in particular,

there does not yet exist a parameterization of discrete ancestral graph models. As a first

step, we study in this paper a particular binary ancestral graph model whose underlying

graph G is shown in Figure 1(a). The graph G encodes an independence structure that

can be summarized non-redundantly by the marginal independences

X1⊥⊥(X3, X4), (X1, X2)⊥⊥X4. (1)

The graphs in Figure 1(b)-(d) are the three other ancestral graphs that are Markov

equivalent to G. i.e. encode the exact same independences. The Gaussian model based
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on G receives special attention in Wermuth et al. (2004); after appropriate conditioning

it gives rise to the model studied in Drton & Richardson (2004c).

Figure 1 about here

Our work consists of a detailed comparison of the Gaussian ancestral graph model

based on G and its binary analog. We first explore the relationships to canonical hidden

variable models (Section 2), which in the Gaussian case are equal to the ancestral graph

model, i.e. they impose only the independences (1). In the binary case, the models differ

and we derive cubic polynomial constraints of non-independence type that are imposed

by the hidden variable models but not by the ancestral graph model. We then study

the likelihood function of the two ancestral graph models (Section 3). We provide a

simple parameterization of the binary model, from which we obtain that the likelihood

function of the binary model is guaranteed to be unimodal. This is surprising because

the likelihood function of the Gaussian model may be multimodal (Drton, 2004; Drton &

Richardson, 2004c). Our findings, summarized in Section 4, suggest that binary ancestral

graph models may behave very differently from their Gaussian analogs. We remark that

tools from computational algebra used in this paper are likely to be helpful in the study

of discrete ancestral graph models beyond the particular example considered here (see

also Geiger et al., 2005; Pistone et al., 2001; Sturmfels, 2002).

2 Non-independendence constraints for canonical Bayesian

networks with hidden variables

If an ancestral graph contains solely directed and bi-directed edges, as is the case for

the graphs in Figure 1, then the conditional independences it encodes can be induced by

marginalizing over hidden variables in a Bayesian network. Richardson & Spirtes (2002,

§6) show this using so-called canonical DAGs, which, for the ancestral graphs in Figure
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1(a)-(d), are shown in Figure 2(a)-(d). Here X1, X2, X3 and X4 are observed, whereas

H1, H2 and H3 are hidden.

Figure 2 about here

Assume now that the joint distribution of observed and hidden variables satisfies

the global Markov property for one of the DAGs in Figure 2 (Lauritzen, 1996, §3.2.2).

In particular, the marginal distribution of the observed variables (X1, X2, X3, X4) must

satisfy the marginal independences in (1). By Richardson & Spirtes (2002, Thm. 6.3),

no other conditional independences than the consequences of (1) will generally hold

among (X1, X2, X3, X4). However, the hidden variable models may impose additional

constraints on the observed margin that are not of independence type. Such constraints

may be equality (e.g. Richardson & Spirtes, 2002, §7.3.1) or inequality constraints (e.g.

Richardson & Spirtes, 2002, §8.6).

2.1 Gaussian canonical Bayesian networks

Let the joint distribution of observed and hidden variables be a multivariate normal

distribution N (0, Γ), which is assumed to be centered merely for notational convenience.

The covariance matrix Γ is assumed to be positive definite, denoted by Γ > 0. Let

Σ = (σij) > 0 be the 4×4 covariance matrix of the observed variables (X1, X2, X3, X4)
t.

As argued above, Σ must be such that the marginal independences (1) hold, i.e.

σ13 = σ14 = σ24 = 0. (2)

By lengthy elementary algebra using the parameterization of Gaussian Bayesian net-

works (e.g. Richardson & Spirtes, 2002, §8; Andersson & Perlman, 1998), one can show

that for all the canonical DAGs D in Figure 2, the restrictions (2) are the only restric-

tions imposed by the Bayesian network with hidden variables based on D. This is stated

more precisely in the following proposition.
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Proposition 1. Let D be any one of the four DAGs in Figure 2, and let Σ > 0 be a

4 × 4 matrix satisfying (2). Then one can find Γ > 0, where Γ ∈ R
5×5, Γ ∈ R

6×6 or

Γ ∈ R
7×7 depending on which DAG D is considered, such that

1. the distribution N (0, Γ), the joint multivariate normal distribution of observed and

hidden variables, is globally Markov with respect to D, and

2. the 4× 4 submatrix of Γ that gives the covariance matrix of the observed variables

(X1, X2, X3, X4)
t is equal to Σ.

2.2 Binary canonical Bayesian networks

Now assume that Xi, i = 1, . . . , 4, and Hi, i = 1, 2, 3, are all binary with state space

represented by {0, 1}. Are the marginal independences in (1) still the only restrictions

imposed by the hidden variable models based on the canonical DAGs in Figure 2?

Let D be the DAG in Figure 2(a) featuring only one hidden variable. Let P be a

probability distribution that is globally Markov with respect to D. Let

pijkℓh = P (X1 = i, X2 = j, X3 = k, X4 = ℓ, H2 = h). (3)

Furthermore, let

pijkℓ = pijkℓ+ =
1

∑

h=0

pijkℓ h (4)

denote the observable probabilities. Every globally Markov distribution P induces a

marginal distribution for the observed variables (X1, X2, X3, X4)
t, and we denote the

family of all these marginal distributions by D.

In order to find restrictions which must hold for a vector of observable probabilities

to be in D, we take an algebraic approach (cf. Garcia, 2004; Garcia et al., 2004), in

which polynomial (equality) constraints can be found (see Cox et al. (1997) for an

introduction to the algebra involved). In general, additional inequality constraints will
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have to hold among the observable probabilities to ensure that the marginal distribution

of observed variables is in D. In the algebraic approach, it is advantageous to consider

the global Markov property rather than the local Markov property of the DAG D. The

independences implied by the global Markov property for the DAG D can be summarized

by the four independence statements

X1 ⊥⊥ (X3, X4, H2), X4 ⊥⊥ (X1, X2, H2),

(X1, X2)⊥⊥ (X3, X4) | H2, (X1, X4)⊥⊥H2.

These four independence statements define an ideal IM in the polynomial ring R[pijkℓh]

generated by the 25 indeterminates pijkℓh; compare Sturmfels (2002, §8). Loosely said,

conditional independences for binary variables require some (conditional) odds ratios

to be equal to one, which after clearing denominators yields polynomial relations. We

write R[pijkℓ] for the polynomial subring of R[pijkℓh] generated by the 24 observable

probabilities pijkℓ from (4). Let PM be the distinguished prime ideal of IM in the

polynomial ring R[pijkℓh], see Garcia et al. (2004, §4). The ideal PM can be characterized

as the set of all homogeneous polynomial functions on R
25

which vanish on all probability

distributions that factor according to the DAG D.

Proposition 2 (Garcia et al., 2004, Prop. 19). The set of all polynomial functions

which vanish on the set D of observable probability distributions is equal to the sum of

the prime ideal

P ′
M = PM ∩ R[pijkℓ] (5)

and the ideal
〈

1
∑

i,j,k,ℓ=0

pijkℓ − 1
〉

(6)

generated by the constraint that the observable probabilities sum to one.

For the considered model we find that PM = IM and that P ′
M is generated by three
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groups of polynomials: (i) the six 2 × 2 subdeterminants of the matrix





p0000 + p0100 p0001 + p0101 p0010 + p0110 p0011 + p0111

p1000 + p1100 p1001 + p1101 p1010 + p1110 p1011 + p1111



 , (7)

which correspond to X1⊥⊥(X3, X4); (ii) the six 2 × 2 subdeterminants of the matrix





p0000 + p0010 p0100 + p0110 p1000 + p1010 p1100 + p1110

p0001 + p0011 p0101 + p0111 p1001 + p1011 p1101 + p1111



 , (8)

which correspond to X4⊥⊥(X1, X2); and (iii) the sixteen 3 × 3 subdeterminants of the

4 × 4 matrix
















p0000 p0001 p0010 p0011

p0100 p0101 p0110 p0111

p1000 p1001 p1010 p1011

p1100 p1101 p1110 p1111

















. (9)

The sixteen cubics in (iii) are constraints of non-independence type that are imposed by

the hidden variable model but are not imposed in the ancestral graph model.

For the DAGs in Figure 2(b)-(d), it is also the case that the polynomials (i), (ii),

and (iii) generate the ideal P ′
M. In fact, it can be shown that the set D of vectors of

observable probabilities pijkℓ, (i, j, k, ℓ) ∈ {0, 1}4, is the same regardless of which one of

the four DAGs in Figure 2(a)-(d) induces D.

Remark. The hidden variable model D is non-identifiable regardless of which one of the

DAGs in Figure 2(a)-(d) is employed to parameterize the model. If the model D is

parameterized using the conditional parameters associated with the smallest DAG, the

one in Figure 2(a), then the parameterization comprises 11 parameters: one parameter

for each one of the marginal distributions of H2, X1 and X4, and eight more for the

conditional distributions (X2 | X1, H2) and (X3 | X4, H2). The dimension of the hidden

variable model D, however, is equal to 9.
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3 Likelihood inference in ancestral graph models

We now leave hidden variables models (and non-identifiability issues) behind and return

to the ancestral graph model based on the equivalent graphs in Figure 1. For a study

of the likelihood function, it is convenient to work with the graph G in Figure 1(a). We

remark that the independences (1) can also be represented by the AMP chain graph

(Andersson et al., 2001)

X1 −→ X2 −−− X3 ←− X4.

Thus the below results also apply to AMP chain graphs.

3.1 Gaussian model

The ancestral graph model based on G is the family of (centered) normal distributions

N (0, Σ) for (X1, X2, X3, X4)
t with covariance matrix Σ = (σij) > 0 satisfying (2). ML

estimation in this model is well understood. If S is the sample covariance matrix, then

the ML estimators (MLE) of σ11 and σ44 are σ̂11 = S11 and σ̂44 = S44 (cf. Drton &

Richardson, 2004a). The remaining parameters can be estimated in the model of condi-

tional distributions (X3, X4 | X1, X2) that constitutes a seemingly unrelated regressions

model. This yields the following fact (see also Drton, 2004).

Proposition 3 (Drton & Richardson, 2004c, Thm. 2). The Gaussian ancestral

graph model based on the Markov equivalent graphs in Figure 1 has up to five solutions

to the likelihood equations, three of which may be local maxima.

3.2 Parameterization of the binary model

Assume now that Xi, i = 1, . . . , 4, are binary with state space {0, 1} and joint distribu-

tion P . Let

pijkℓ = P (X1 = i, X2 = j, X3 = k, X4 = ℓ),
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and

p = (p0000, p0001, . . . , p1111) ∈ ∆,

where ∆ is the probability simplex in R
16. The binary ancestral graph model associated

with the graph G is defined implicitly as the family of distributions

G = {p ∈ ∆ | p satisfies (1)}. (10)

In order to find a parameterization of G, we use property (C4) of conditional inde-

pendence (Lauritzen, 1996, Ch. 3) to rewrite the independences (1) equivalently as

X1⊥⊥X4, X1⊥⊥X3 | X4, X2⊥⊥X4 | X1. (11)

This motivates the following parameterization consisting of the marginal parameters

s1 = P (X1 = 0), s4 = P (X4 = 0),

and the conditional parameters

t2i = P (X2 = 0 | X1 = i), i = 0, 1, t3ℓ = P (X3 = 0 | X4 = ℓ), ℓ = 0, 1,

uiℓ = P (X2 = 0, X3 = 0 | X1 = i, X4 = ℓ), i, ℓ = 0, 1.

Overall we have specified 10 parameters that can be mapped to a vector p ∈ G as follows.

First, we define the marginal distribution of (X1, X4) by setting

P (X1 = 0, X4 = 0) = s1s4, P (X1 = 0, X4 = 1) = s1(1 − s4),

P (X1 = 1, X4 = 0) = (1 − s1)s4, P (X1 = 1, X4 = 1) = (1 − s1)(1 − s4).

Define the conditional distribution (X2, X3 | X1, X4) by setting for all (i, ℓ) ∈ {0, 1}2:

P (X2 = 0, X3 = 0 | X1 = i, X4 = ℓ) = uiℓ,

P (X2 = 0, X3 = 1 | X1 = i, X4 = ℓ) = t2i − uiℓ,

P (X2 = 1, X3 = 0 | X1 = i, X4 = ℓ) = t3ℓ − uiℓ,

P (X2 = 1, X3 = 1 | X1 = i, X4 = ℓ) = 1 − t2i − t3ℓ + uiℓ.

(12)
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Now the parameterization is the injective map R
10 → R

16 with the 16 coordinates

pijkℓ = P (X1 = i, X4 = ℓ)P (X2 = j, X3 = k | X1 = i, X4 = ℓ). (13)

It is not hard to verify via (11) that if the parameters are chosen such that p ∈ ∆,

then in fact p ∈ G, and vice versa. Since the components of p defined in (13) sum to

one, p ∈ ∆ if and only if the 16 inequalities pijkℓ ≥ 0 hold. Let Θ ⊂ R
8 be the set of

vectors θ = (t20, t21, . . . , u11)
t in [0, 1]8 that satisfy

t2i + t3ℓ − 1 ≤ uiℓ ≤ min{t2i, t3ℓ} (14)

for all i, ℓ = 0, 1. Then p ∈ ∆ if and only if (s1, s4, t20, t21, . . . , u11) ∈ [0, 1]2 × Θ, which

is the parameter space of G.

3.3 Maximum likelihood estimation in the binary model

Given data nijkℓ ∈ N indicating how often the events X1 = i, X2 = j, X3 = k, and

X4 = ℓ occurred and assuming multinomial sampling, the log-likelihood function of G is

log L(p) =
1

∑

i,j,k,ℓ=0

nijkℓ log(pijkℓ),

where we ignored a parameter independent additive constant. An MLE p̂ of p satisfies

p̂ ∈ arg max{log L(p) | p ∈ G}. (15)

Using the parameterization presented in Section 3.2, we write log L(p) as the sum

log L(p) = log L1(s1) + log L4(s4) + log L23|14(t20, . . . , u11), (16)

where

log L1(s1) =n0+++ log(s1) + n1+++ log(1 − s1),

log L4(s4) =n+++0 log(s4) + n+++1 log(1 − s4),
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and

log L23|14(t20, . . . , u11) = n0000 log(u00) + n0001 log(u01)+

n0010 log(t20 − u00) + · · · + n1111 log(1 − t21 − t31 + u11).

Recall that if an index of a vector is replaced by plus-signs then this indicates that a

sum was taken over the index; compare (4).

The graphical models literature does not contain any results on the structure of the

maximization problem in (15). In particular, it is unknown if the likelihood function

may have several local maxima over the model—a question we can now answer.

Theorem 4. Let all counts in the data vector n be positive. Then the MLE p̂ of p ∈ G is

the unique local maximum of the likelihood function L over G. Two of the components of

the parametric representation of p̂ can be computed explicitly as rational functions of the

data, namely ŝ1 = n0+++/n++++ and ŝ4 = n+++0/n++++. The remaining components

can be computed by solving a system of polynomial equations having 145 solutions (all

real), but only one solution leading to an estimate in ∆.

Proof. Since the parameter space [0, 1]2 × Θ is a Cartesian product, the decomposition

(16) permits to find the MLE of s1 by maximizing log L1 individually. Thus, the MLE

of s1 is ŝ1 = n0+++/n++++. Similarly the MLE of s4 is ŝ4 = n+++0/n++++. There-

fore, after substituting ŝ1 for s1 and ŝ4 for s4, the parameterization (13) is a linear

parameterization in 8 parameters; compare (12).

Catanese et al. (2004) introduce the concept of ML degree, which is the number of

complex solutions to the likelihood equations of a statistical model, or equivalently the

degree of the algebraic function that maps the data to the MLE. What we are claiming

is that ML degree of the binary model G equals 145. In Catanese et al. (2004, Thm.

13), the authors show that the ML degree of a linearly parameterized model is equal

to the number of bounded regions of the hyperplane arrangement defined by the linear
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parametric equations, i.e. the equations

u00 = 0, u01 = 0, t20 − u00 = 0, . . . , 1 − t21 − t31 + u11 = 0.

The number of bounded regions of a hyperplane arrangement A can be obtained by

evaluating the Poincaré polynomial of A at −1, see Zaslavsky (1975). The Poincaré

polynomial of the hyperplane arrangement (13) equals

P (t) = 1880 t8 + 4536 t7 + 5160 t6 + 3616 t5 + 1704 t4 + 552 t3 + 120 t2 + 16 t + 1.

Thus, the ML degree equals P (−1) = 145. This computation was carried using D.

Serenevy’s GAP Arrangements package 1. The same answer was independently obtained

in Singular (Greuel et al., 2001) using Algorithm 18 in Hosten et al. (2004).

Despite the fact that the likelihood equations generally have 145 solutions (all of

which are in fact guaranteed to be real), only one solution will be in the probability

simplex. This follows from the fact that, since pijkℓ are products of linear forms in the

parameters, the log-likelihood function log L is strictly concave and has exactly one local

= global maximum over the model G.

Theorem 4 shows that the likelihood equations of the model G can be solved via a

high-degree system of polynomial equations. In practice, however, it will be computa-

tionally more efficient to apply a hill-climbing method to compute the unique maximum

of the likelihood function.

3.4 Zero counts in the binary model

In Theorem 4 the counts nijkℓ were assumed to be all positive. This condition is sufficient

but not necessary for strict concavity of the log-likelihood function, and can be relaxed

as follows. Let

I =
{

(i, j, k, ℓ) ∈ {0, 1}4 | nijkℓ ≥ 1
}

(17)

1http://dean.serenevy.net//?page=arrangement
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be the set indexing the positive counts. The mapping R
8 → R

16 from the parameters

θ = (t20, t21, . . . , u11)
t to the 16 conditional probabilities P (X2 = j, X3 = k | X1 =

i, X4 = ℓ) in (12) is linear. Thus the vector of conditional probabilities can be written

as Cθ + b, where b is a vector whose components are equal to one if j = k = 1 and equal

to zero otherwise. The matrix C equals

C =

























































































t20 t21 t30 t31 u00 u01 u10 u11

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

1 0 0 0 −1 0 0 0

1 0 0 0 0 −1 0 0

0 0 1 0 −1 0 0 0

0 0 0 1 0 −1 0 0

−1 0 −1 0 1 0 0 0

−1 0 0 −1 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 1 0 0 0 0 −1 0

0 1 0 0 0 0 0 −1

0 0 1 0 0 0 −1 0

0 0 0 1 0 0 0 −1

0 −1 −1 0 0 0 1 0

0 −1 0 −1 0 0 0 1

























































































with the rows being ordered according to

(i, j, k, ℓ) = (0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), . . . , (1, 1, 1, 1).

Theorem 5. Let CI be the |I| × 8 submatrix of C obtained by selecting the rows of C

corresponding to the indices in I. Then the log-likelihood function log L of the model G

is strictly concave if and only if the matrix CI is of full rank 8.
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Proof. In the decomposition (16) of the log-likelihood function, the pieces log L1 and

log L4 are strictly concave if and only if n++++ ≥ 1, i.e. if there are any data at all.

Therefore, log L is strictly concave if and only if the conditional log-likelihood function

log L23|14 : Θ → R is strictly concave.

Let θ 6= θ̄ be two vectors in Θ ⊆ R
8. Let c = Cθ + b and c̄ = Cθ̄ + b be the two

corresponding vectors of conditional probabilities. If CI is of full rank then there exists

(i0, j0, k0, ℓ0) ∈ I such that ci0j0k0ℓ0 6= c̄i0j0k0ℓ0 . By strict concavity of the logarithm it

follows that for any λ ∈ (0, 1),

log[λcijkℓ + (1 − λ)c̄ijkℓ] ≥ λ log(cijkℓ) + (1 − λ) log(c̄ijkℓ) ∀(i, j, k, ℓ) ∈ {0, 1}4,

and

log[λci0j0k0ℓ0 + (1 − λ)c̄i0j0k0ℓ0 ] > λ log(ci0j0k0ℓ0) + (1 − λ) log(c̄i0j0k0ℓ0).

Thus log L23|14 is strictly concave.

If the rank of CI is not full then there exists a vector θ0 6= 0 in the kernel of CI .

Choosing θ ∈ Θ and ν ∈ R such that θ̄ = θ + νθ0 ∈ Θ, we find that log L23|14 is constant

over the line segment between θ and θ0, hence not strictly concave.

If the log-likelihood function log L of the model G is strictly concave then it has a

unique local = global maximum, and we saw that strict concavity depends on which

counts nijkℓ are positive. Regardless of the data, however, the log-likelihood function

is concave, which yields that any local maximum is already a global maximum. The

following two examples illustrate two points about the situation when the log-likelihood

function is not strictly concave. On one hand the counts may be such that there are

infinitely many local = global maxima. On the other hand they may be such that there

is a unique local maximum even if the log-likelihood function is not strictly concave.

Example 6. Assume that the only positive counts are n0000 and n0001. Then

log L23|14(θ) = n0000 log(u00) + n0001 log(u01).
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Clearly, this function is maximized by any θ̂ ∈ Θ such that û00 = û01 = 1. By (14), it

has to hold that t̂20 = t̂30 = t̂31 = 1. The remaining components (t̂21, û10, û11) may take

on any feasible values.

Example 7. Assume now that the only positive counts are n0000 and n1111. Then

log L23|14(θ) = n0000 log(u00) + n1111 log(1 − t21 − t31 + u11).

If θ̂ ∈ Θ maximizes this function (locally or globally), then û00 = 1 and 1−t̂21−t̂31+û11 =

1. By (14), û00 = 1 implies that t̂20 = t̂30. From û11 = t̂21 + t̂31, it follows via (14) that

t̂21 = t̂31 = û01 = û10 = û11 = 0. Hence, the maximizer θ̂ is unique.

3.5 Comment on non-binary discrete models

If the variables Xi, i = 1, . . . , 4, have more than two levels, then a linear parameteri-

zation of conditional probabilities as in (12) can still be found. Suppose Xi ∈ [mi] :=

{1, . . . , mi} may take on one of mi many states. Then the discrete ancestral graph model

defined by (1) can be parameterized by the marginal probabilities

s1(i) = P (X1 = i), i ∈ [m1 − 1],

s4(ℓ) = P (X4 = ℓ), ℓ ∈ [m4 − 1],

and conditional probabilities

t2i(j) = P (X2 = j | X1 = i), (i, j) ∈ [m1] × [m2 − 1],

t3ℓ(k) = P (X3 = k | X4 = ℓ), (k, ℓ) ∈ [m3 − 1] × [m4],

and

uiℓ(j, k) = P (X2 = j, X3 = k | X1 = i, X4 = ℓ),

(i, j, k, ℓ) ∈ [m1] × [m2 − 1] × [m3 − 1] × [m4].
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All conditional probabilities P (X2 = j, X3 = k | X1 = i, X4 = ℓ) can be written as

linear expressions in these parameters similarly as in (12). Thus the results on unique

local maxima of the likelihood function given in Theorems 4 and 5 carry over to discrete

models for non-binary variables defined via (1).

4 Conclusion

In a detailed study, we showed that a binary ancestral graph model can behave very

differently from its Gaussian analog in terms of uniqueness of local maxima of the like-

lihood function and relation to hidden variable models. An interesting observation to

be made from our work is that in both the Gaussian and the binary case all canonical

Bayesian networks with hidden variables associated with Markov equivalent ancestral

graphs induce the same constraints on the observed margin. It is an open problem to

find conditions on the ancestral graph which lead to canonical Bayesian networks im-

posing the same constraints. Another question that remains open is whether binary

ancestral graph models may have a multimodal likelihood function. We believe that

when studying this question algebraic tools such as the ML degree mentioned in the

proof of Theorem 4 will be helpful. However, the degree 145 appearing in Theorem 4

suggests that necessary symbolic computations will be very demanding.
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Figure 1: (a) The ancestral graph G, (b)-(d) the ancestral graphs that are Markov

equivalent to G.
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Figure 2: Canonical DAGs with hidden variables H1, H2 and H3.


