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STRUCTURAL EQUATION MODELS

1 The relationships among a set of observed variables are
expressed by linear equations.

2 Each equation describes the dependence of one variable in terms
of the others, and contains a stochastic error term accounting for
the influence of unobserved factors.

3 Independence assumptions on pairs of error terms are also
specified in the model.
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GAUSSIAN STRUCTURAL EQUATION MODELS

Let G = (V ,D,B) be a graph with vertex set V = {1,2, . . . ,m}, a set of
directed edges D, and a set of bidirected edges B. Assume the
subgraph of directed edges is acyclic and topologically ordered.

Let PDn denote the set of m ×m symmetric positive definite
matrices.

Let PD(B) := {Ω ∈ PDm : ωij = 0 if i 6= j and i ↔ j /∈ B}.

Let ε ∼ N (0,Ω) such that Ω ∈ PD(B).

For each i → j ∈ D let λij ∈ R be a parameter. For each j ∈ V define

Xj =
∑

i:i→j∈D

λijXi + εj .
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GAUSSIAN STRUCTURAL EQUATION MODELS

Xj =
∑

i:i→j∈D

λijXi + εj , for j ∈ V

Let Λ be the strictly upper triangular matrix with Λij = λij if i → j ∈ D
and Λij = 0 otherwise.

Since D is an acyclic digraph, the random vector X = (X1, . . . ,Xm) is
well-defined centered multivariate normal distribution with covariance
matrix

Σ = (I − Λ)−T Ω(I − Λ)−1
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IDENTIFICATION PROBLEM

Decide whether the parameters in a structural model can be
determined uniquely from the covariance matrix of the observed
variables.

Equivalently, decide whether the following map is injective

φG : (Λ,Ω) −→ (I − Λ)−T Ω(I − Λ)−1

The identification of a model is important because, in general, no
reliable quantitative conclusion can be derived from a non-identified
model.
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EXAMPLE (PEARL 2000)

This model investigates the relations between smoking X and lung
cancer Y , taking into consideration the amount of tar Z deposited in
a person’s lungs, and allowing for unobserved factors to affect both
smoking X and cancer Y .

X = ε1

Z = aX + ε2

Y = bZ + ε3

cov(ε1, ε2) = 0
cov(ε2, ε3) = 0
cov(ε1, ε3) = γ

where εi ∼ N (0, ωi).

X Z Y

a b

γ

(smoking) (tar) (cancer)

Figure 1.1: Smoking and lung cancer example

1.1 Data Analysis with SEM and the Identification Problem

The process of data analysis using Structural Equation Models consists of four steps

[KKB98]:

1. Specification: Description of the structure of the model. That is, the qualitative

relations among the variables are specified by linear equations. Quantitative infor-

mation is generally not specified and is represented by parameters.

2. Identification: Analysis to decide if there is a unique valuation for the parameters

that make the model compatible with the observed data. The identification of a

SEM model is formally defined in Section 2.1.

3. Estimation: Actual estimation of the parameters from statistical information on the

observed variables.

4. Evaluation of fit: Assessment of the quality of the model as a description of the

data.

In this work, we will concentrate on the problem of Identification. That is, we

leave the task of model specification to other investigators, and develop conditions

to decide if these models are identified or not. The identification of a model is im-

portant because, in general, no reliable quantitative conclusion can be derived from a

3
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Σ = (I − Λ)−T Ω(I − Λ)−1

[
σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

]
=

[
ω1 aω1 abω1 + γ

aω1 a2ω1 + ω2 a2bω1 + bω2 + aγ
abω1 + γ a2bω1 + bω2 + aγ a2b2ω1 + b2ω2 + ω3 + 2abγ

]
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[
σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

]
=

[
ω1 aω1 abω1 + γ

aω1 a2ω1 + ω2 a2bω1 + bω2 + aγ
abω1 + γ a2bω1 + bω2 + aγ a2b2ω1 + b2ω2 + ω3 + 2abγ

]

φG IS GLOBALLY IDENTIFIABLE

The map φG : (Λ,Ω) −→ (I − Λ)−T Ω(I − Λ)−1 is injective on the entire
possible domain of definition.
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GLOBAL IDENTIFIABILITY

A directed graph D with at least two nodes is an arborescence
converging to node i if i is the unique sink of D.

Given a mixed graph G = (V ,D,B) and a subset A ⊂ V , the mixed
subgraph induced by A, denoted by GA = (A,DA,BA) is the graph
containing all directed and bidirected edges whose endpoints are in A.

THEOREM (DRTON, FOYGEL, SULLIVANT)
The parametrization φG fails to be injective if and only if there is an
induced subgraph GA whose directed part (A,DA) contains a
converging arborescence and whose bidirected part (A,BA) is
connected.
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GLOBAL IDENTIFIABILITY

The mixed graph G = (V ,D,B) is simple, or bow-free if D ∩ B = ∅.

COROLLARY

Suppose the map φG given by an acyclic mixed graph G is injective.
Then G is a simple.

The two unlabeled simple graphs on four nodes with non-injective
parametrization.
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GENERICALLY IDENTIFIABLE

THEOREM (BRITO, PERL)
Any simple graph G is generically identifiable.

α =
σ13

σ12

β =
σ12

σ11

ωXY =
σ12σ23 − σ13σ22

σ12

α

X YZ

β

The parameter α is identified as long as σ12 6= 0. The instrumental
variable graph is not globally identified but generically identified.
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Ω PARAMETERS

Ω = (I − Λ)T Σ(I − Λ).

So if the parameters in Λ are generically identifiable then the
parameters in Ω are generically identifiable.

X2

λ12λ13

ω23

ω13

X1

X3

The parameter ω23 is identified, but λ13 is not identified.

ω23 =
σ11σ23 − σ12σ13

σ11
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APPROACHES TO THE IDENTIFICATION PROBLEM

Algebraic manipulation of the equations defining the model.

1 The method of path coefficients (Wright, 1934)
2 The rank and order criteria (Fisher, 1966)
3 Block recursive models (Fisher, 1966; Rigdon 1995)

Graphical Methods.

1 Single door criterion (Pearl, 2000)
2 Instrumental variables (Bowden and Turkington, 1984)
3 Back door criterion for total effects (Pearl, 2000)
4 G-criterion (Brito, 2006)
5 Graphical methods introduced by Tian (2004; 2005; 2007; 2009)
6 Recanting witness criterion for path-specific effects (Avin, Shpitser

and Pearl, 2005)
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ALGEBRO-GEOMETRIC APPROACH

It remains unclear if these criteria (or combinations of the criteria) are
necessary and sufficient to decide whether or not parameters are
generically identifiable in a general mixed graph.

Introduce a general algebraic framework for performing identifiability
computations for graphical models.

Capable of testing direct effects, total effects, path-specific effects,
error variances and covariances (Ω parameters).
Provides certificates if a given parameter is not identifiable.
Capable of detecting algebraic d-identifiable parameters
(d-to-one parameters).
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BASIC COMPUTATIONAL ALGEBRAIC GEOMETRY

Let k be a field. An affine variety is the common zero locus of
polynomials f1, . . . , fr ∈ k [x1, . . . , xn].

V (f1, . . . , fr ) = {f1 = 0, f2 = 0, . . . , fr = 0}

V (1) = ∅
V (0) = kn

For linear polynomials fi , V (f1, . . . , fr ) is the solution space of an
inhomogeneous system of linear equations. This variety is described
parametrically applying Gauss Algorithm.
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IDEALS

Given f1, . . . , fr in k [x1, . . . , xn],

〈f1, . . . , fr 〉 = {
n∑

i=i

hi fi | h1, . . . ,hn ∈ k [x1, . . . , xn]}

is the ideal generated by f1, . . . , fr .

THEOREM (HILBERT BASIS THEOREM)
If I ⊂ k [x1, . . . , xn] is an ideal, there exists f1, . . . , fr such that

〈f1, . . . , fr 〉 = I.
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RATIONAL PARAMETRIZATION

Let p1(t1, . . . , td ), . . . ,pn(t1, . . . , td ) ∈ k [t1, . . . , td ]. The set

S = {
(
p1(a1, . . . ,ad ), . . . ,pn(a1, . . . ,ad )

)
∈ kn | (a1, . . . ,ad ) ∈ kd}

is called a rational parametrization (r.p.).

I(S) = {g ∈ k [x1, . . . , xn] | g(a1, . . . ,an) = 0 for all (a1, . . . ,an) ∈ S}

I(S) is the ideal of polynomial functions vanishing on S.

THEOREM

If S is a r.p. and I(S) = 〈f1, . . . , fr 〉 then S and V (f1, . . . , fr ) differ by a
set of dimension less than the dimension of S.

LUIS GARCÍA–PUENTE (SHSU) AIM 2010 18 / 33



CUBIC PLANE CURVE

Let S = {(t2 + 1, t3 + t) | t ∈ R}. Then I(S) =
〈
y2 − x3 − x2〉
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PROJECTION AND ELIMINATION

For any ideal I ⊂ k [x1, . . . , xn] we consider the elimination ideal

Im = I ∩ k [xm+1, . . . , xn]

and the projection πm : kn −→ kn−m given by

πm(a1, . . . ,an) = (am+1, . . . ,an)

THEOREM

If k is algebraically closed, then πm(V (I)) = V (Im).

THEOREM

If G = {g1, . . . ,gr} is a Gröbner basis of I ⊂ k [x1, . . . , xn] with respect
to the lexicographic ordering, then

Gm = G ∩ k [xm+1, . . . , xn]

is a Gröbner basis of Im ⊂ k [xm+1, . . . , xn] w.r.t. lex.
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RATIONAL IMPLICITIZATION

THEOREM

Suppose k is an infinite field and we are given a rational map
φ : km \ Z −→ kn given by

(t1, . . . , tm) 7−→
( f1(t)

g1(t)
, . . . ,

fn(t)
gn(t)

)
with fi and gi ∈ k [t1, . . . , tm] and Z = V (g1 · g2 · · · gn). Let

I = 〈g1x1 − f1, . . . ,gnxn − fn,1− gs〉 ⊂ k [s, t1, . . . , tm, x1, . . . , xn]

Then
Im(φ) = V (Im+1)
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IMPLICITIZATION OF THE UNIT CIRCLE

Consider the parametrization of the unit circle given by the 2nd

intersection point of y = t(x + 1) with the circle:

t 7−→
(1− t2

t2 + 1
,

2t
t2 + 1

)
Let I =

〈
(t2 + 1)x − (1− t2), (t2 + 1)y − 2t ,1− (t2 + 1)2s

〉
. The set

{x2 + y2 − 1, ty + x − 1, tx + t − y , s − 1
2

x − 1
2
}

is a Gröbner basis with respect to lex s > t > x > y . Hence

I2 =
〈

x2 + y2 − 1
〉

.
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IDENTIFIABLE PARAMETERS

Let Θ ⊆ Rd be a full dimensional parameter set.

Let φ1, . . . , φn ∈ R[t1, . . . , td ], and Φ : Θ→ Rn be the function defined
by Φ(θ) = (φ1(θ), . . . , φn(θ))T .

A parameter is a polynomial function u : Θ→ R which is not constant
on Θ.

The parameter u is identifiable if there exists a map Ψ : Rn → R such
that u(θ) = Ψ ◦ Φ(θ) for all θ ∈ Θ.

The parameter u is generically identifiable if there exists a map
Ψ : Rn → R and a dense open subset O of Θ such that u(θ) = Ψ ◦Φ(θ)
for all θ ∈ O.
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ALGEBRAIC APPROACH

Given Φ : Θ→ Rn defined by Φ(θ) = (φ1(θ), . . . , φn(θ))T , we want to
check if the parameter u is (generically) identifiable.

The vanishing ideal of S ⊆ Rn is the set

I(S) := {g ∈ R[p1, . . . ,pn] : g(a) = 0 for all a ∈ S}.

Let Φ̃ = (u, φ1, . . . , φn)T : Θ→ Rd+1.

Let R[q,p] be the polynomial ring with one extra indeterminate
corresponding to the parameter function u.

Let I(Φ̃(Θ)) be the vanishing ideal of the image.
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PARAMETER IDENTIFIABILITY

THEOREM

Suppose that g(q,p) ∈ I(Φ̃(Θ)) is a polynomial such that q appears in
this polynomial, g(q,p) =

∑d
i=0 gi(p)qi and gd (p) does not belong to

I(Φ(Θ)).

1 If g is linear in q, g = g1(p)q − g0(p) then u is generically
identifiable by the formula u = g0(p)

g1(p)
. If, in addition, g1(p) 6= 0 for

p ∈ Φ(Θ) then u is identifiable.

2 If g has higher degree d in q, then u is algebraically
d-identifiable (may or might not be identifiable).

3 If no such polynomial g exists then the parameter u is not
generically identifiable.
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COMPUTATIONAL RESULTS

THEOREM

Of the 64 mixed graphs on three vertices,

there are exactly 31 graphs that are generically identifiable and
33 graphs that are not generically identifiable.

The single-door criterion and instrumental variables form a
complete method to generically identify direct causal effects for
SEM models on three variables.
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COMPUTATIONAL RESULTS

THEOREM

Of the 4096 mixed graphs on four variables

exactly 1246 are generically identifiable, 6 are algebraically
2-identified, and 2844 are not generically identifiable.

Of the 1246 generically identifiable models, exactly 1093 are
generically identified by the single-door and instrumental variables
criteria and the remaining 153 generically identified models
contain direct causal effect parameters only identified by the
algebraic method.

There are exactly 729 bow-free models, each generically identified
by the single-door criterion.
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STRUCTURAL EQUATION MODELS WEB SITE

http://www.shsu.edu/research/graphicalmodels/
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CHALLENGE 1

Show that λ12 is generically
identifiable.
Do you know of a graphical
criterion that can identify this
parameter?
Show that G is generically
identifiable.
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CHALLENGE 2

Show that λ24 and λ34 are
generically identifiable.
Do you know of a graphical
criterion that can identify these
parameters?
Show that G is generically
identifiable.
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CHALLENGE 3

Show that λ13 and λ23 are
generically identifiable.
Do you know of a graphical
criterion that can identify these
parameters?
Show that G is generically
identifiable.
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CHALLENGE 4

Show that λ13 and λ23 are not
generically identifiable.
Show that the total effect of
X1 on X3: λ12λ23 + λ13 is
generically identifiable.
This total effect is not
identified by the Back-Door
criterion. Is there a graphical
criterion that identifies this
parameter?
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CHALLENGE 5

TABLE: Algebraically 2-identified SEMs on four variables.

Directed edges Bidirected edges

1→ 2,2→ 3,3→ 4 1↔ 2,1↔ 3,1↔ 4
1→ 2,2→ 3,2→ 4 1↔ 2,1↔ 3,1↔ 4
1→ 2,1→ 4,2→ 3 1↔ 2,1↔ 3,1↔ 4
1→ 2,1→ 3,3→ 4 1↔ 2,1↔ 3,1↔ 4
1→ 2,1→ 3,2→ 4 1↔ 2,1↔ 3,1↔ 4
1→ 2,1→ 3,1→ 4 1↔ 2,1↔ 3,1↔ 4

Is there a combinatorial description of these mixed graphs?
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