IDENTIFYING CAUSAL EFFECTS WITH COMPUTER ALGEBRA

Luis David García-Puente

Department of Mathematics and Statistics Sam Houston State University University

Parameter Identification In Graphical Models The American Institute of Mathematics
October 4, 2010

Structural Equation Models

(1) The relationships among a set of observed variables are expressed by linear equations.
(2) Each equation describes the dependence of one variable in terms of the others, and contains a stochastic error term accounting for the influence of unobserved factors.
(3) Independence assumptions on pairs of error terms are also specified in the model.

Structural Equation Models

(1) The relationships among a set of observed variables are expressed by linear equations.
(2 Each equation describes the dependence of one variable in terms of the others, and contains a stochastic error term accounting for the influence of unobserved factors.
(0) Independence assumptions on pairs of error terms are also specified in the model.

Structural Equation Models

(1) The relationships among a set of observed variables are expressed by linear equations.
(2 Each equation describes the dependence of one variable in terms of the others, and contains a stochastic error term accounting for the influence of unobserved factors.

- Independence assumptions on pairs of error terms are also specified in the model.

GAUSSIAN STRUCTURAL EQUATION MODELS

Let $G=(V, D, B)$ be a graph with vertex set $V=\{1,2, \ldots, m\}$, a set of directed edges D, and a set of bidirected edges B. Assume the subgraph of directed edges is acyclic and topologically ordered.

Let $P D_{n}$ denote the set of $m \times m$ symmetric positive definite matrices.

Let $P D(B):=\left\{\Omega \in P D_{m}: \omega_{i j}=0\right.$ if $i \neq j$ and $\left.i \leftrightarrow j \notin B\right\}$.
Let $\epsilon \sim \mathcal{N}(0, \Omega)$ such that $\Omega \in P D(B)$.
For each $i \rightarrow j \in D$ let $\lambda_{i j} \in \mathbb{R}$ be a parameter. For each $j \in V$ define

$$
X_{j}=\sum_{i: i \rightarrow j \in D} \lambda_{i j} X_{i}+\epsilon_{j} .
$$

GAUSSIAN STRUCTURAL EQUATION MODELS

$$
x_{j}=\sum_{i: i \rightarrow j \in D} \lambda_{i j} x_{i}+\epsilon_{j}, \text { for } j \in V
$$

Let \wedge be the strictly upper triangular matrix with $\Lambda_{i j}=\lambda_{i j}$ if $i \rightarrow j \in D$ and $\Lambda_{i j}=0$ otherwise.

Since D is an acyclic digraph, the random vector $X=\left(X_{1}, \ldots, X_{m}\right)$ is well-defined centered multivariate normal distribution with covariance matrix

$$
\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}
$$

Identification Problem

Decide whether the parameters in a structural model can be determined uniquely from the covariance matrix of the observed variables.

Equivalently, decide whether the following map is injective

$$
\phi_{G}:(\Lambda, \Omega) \longrightarrow(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}
$$

The identification of a model is important because, in general, no reliable quantitative conclusion can be derived from a non-identified model.

Example (Pearl 2000)

This model investigates the relations between smoking X and lung cancer Y, taking into consideration the amount of tar Z deposited in a person's lungs, and allowing for unobserved factors to affect both smoking X and cancer Y.

$$
\begin{aligned}
& X=\varepsilon_{1} \\
& Z=a X+\varepsilon_{2} \\
& Y=b Z+\varepsilon_{3} \\
& \operatorname{cov}\left(\varepsilon_{1}, \varepsilon_{2}\right)=0 \\
& \operatorname{cov}\left(\varepsilon_{2}, \varepsilon_{3}\right)=0 \\
& \operatorname{cov}\left(\varepsilon_{1}, \varepsilon_{3}\right)=\gamma
\end{aligned}
$$

where $\varepsilon_{i} \sim \mathcal{N}\left(0, \omega_{i}\right)$.

Example (Pearl 2000)

$$
\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{22} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{33}
\end{array}\right]=\left[\begin{array}{ccc}
\omega_{1} & a \omega_{1} & a b \omega_{1}+\gamma \\
a \omega_{1} & a^{2} \omega_{1}+\omega_{2} & a^{2} b \omega_{1}+b \omega_{2}+a \gamma \\
a b \omega_{1}+\gamma & a^{2} b \omega_{1}+b \omega_{2}+a \gamma & a^{2} b^{2} \omega_{1}+b^{2} \omega_{2}+\omega_{3}+2 a b \gamma
\end{array}\right]
$$

Example (Pearl 2000)

$$
\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{22} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{33}
\end{array}\right]
$$

$$
a=\frac{\sigma_{12}}{\sigma_{11}} \quad b=\frac{\sigma_{12} \sigma_{13}-\sigma_{11} \sigma_{23}}{\sigma_{12}^{2}-\sigma_{11} \sigma_{22}}
$$

$\omega_{1}=\sigma_{11} \quad \omega_{2}=\frac{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}}{\sigma_{11}} \quad \gamma=\frac{\sigma_{11} \sigma_{12} \sigma_{23}-\sigma_{11} \sigma_{13} \sigma_{22}}{\sigma_{12}^{2}-\sigma_{11} \sigma_{22}}$

$$
\begin{aligned}
\omega_{3}= & \frac{1}{\left(\sigma_{12}^{2}-\sigma_{11} \sigma_{22}\right)^{2}}\left(\sigma_{12}^{2} \sigma_{13}^{2} \sigma_{22}-2 \sigma_{12}^{3} \sigma_{13} \sigma_{23}+\right. \\
& \left.2 \sigma_{11} \sigma_{12}^{2} \sigma_{23}^{2}-\sigma_{11}^{2} \sigma_{22} \sigma_{23}^{2}+\sigma_{12}^{4} \sigma_{33}-2 \sigma_{11} \sigma_{12}^{2} \sigma_{22} \sigma_{33}+\sigma_{11}^{2} \sigma_{22}^{2} \sigma_{33}\right)
\end{aligned}
$$

Example (Pearl 2000)

$$
\left[\begin{array}{ccc}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{22} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{33}
\end{array}\right]=\left[\begin{array}{ccc}
\omega_{1} & a \omega_{1} & a b \omega_{1}+\gamma \\
a \omega_{1} & a^{2} \omega_{1}+\omega_{2} & a^{2} b \omega_{1}+b \omega_{2}+a \gamma \\
a b \omega_{1}+\gamma & a^{2} b \omega_{1}+b \omega_{2}+a \gamma & a^{2} b^{2} \omega_{1}+b^{2} \omega_{2}+\omega_{3}+2 a b \gamma
\end{array}\right]
$$

ϕ_{G} IS GLOBALLY IDENTIFIABLE

The $\operatorname{map} \phi_{G}:(\Lambda, \Omega) \longrightarrow(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}$ is injective on the entire possible domain of definition.

GLOBAL IdENTIFIA BILITY

A directed graph D with at least two nodes is an arborescence converging to node i if i is the unique sink of D.

Given a mixed graph $G=(V, D, B)$ and a subset $A \subset V$, the mixed subgraph induced by A, denoted by $G_{A}=\left(A, D_{A}, B_{A}\right)$ is the graph containing all directed and bidirected edges whose endpoints are in A.

Theorem (Drton, Foygel, Sullivant)

The parametrization ϕ_{G} fails to be injective if and only if there is an induced subgraph G_{A} whose directed part $\left(A, D_{A}\right)$ contains a converging arborescence and whose bidirected part $\left(A, B_{A}\right)$ is connected.

Global Identifia bility

The mixed graph $G=(V, D, B)$ is simple, or bow-free if $D \cap B=\emptyset$.

Corollary

Suppose the map ϕ_{G} given by an acyclic mixed graph G is injective. Then G is a simple.

The two unlabeled simple graphs on four nodes with non-injective parametrization.

Generically Identifia ble

Theorem (Brito, Perl)

Any simple graph G is generically identifiable.

$$
\begin{aligned}
\alpha & =\frac{\sigma_{13}}{\sigma_{12}} \\
\beta & =\frac{\sigma_{12}}{\sigma_{11}} \\
\omega_{X Y} & =\frac{\sigma_{12} \sigma_{23}-\sigma_{13} \sigma_{22}}{\sigma_{12}}
\end{aligned}
$$

The parameter α is identified as long as $\sigma_{12} \neq 0$. The instrumental variable graph is not globally identified but generically identified.

Ω PARAMETERS

$$
\Omega=(I-\Lambda)^{T} \Sigma(I-\Lambda) .
$$

So if the parameters in Λ are generically identifiable then the parameters in Ω are generically identifiable.

The parameter ω_{23} is identified, but λ_{13} is not identified.

$$
\omega_{23}=\frac{\sigma_{11} \sigma_{23}-\sigma_{12} \sigma_{13}}{\sigma_{11}}
$$

A pproaches to the Identification Problem

Algebraic manipulation of the equations defining the model.
(1) The method of path coefficients (Wright, 1934)
(3) The rank and order criteria (Fisher, 1966)
(0) Block recursive models (Fisher, 1966; Rigdon 1995)

Graphical Methods.
© Single door criterion (Pearl, 2000)
(2 Instrumental variables (Bowden and Turkington, 1984)
(0) Back door criterion for total effects (Pearl, 2000)
© G-criterion (Brito, 2006)

- Graphical methods introduced by Tian (2004; 2005; 2007; 2009)
- Recanting witness criterion for path-specific effects (Avin, Shpitser and Pearl, 2005)

Algebro-GeOMETRIC APPROACH

It remains unclear if these criteria (or combinations of the criteria) are necessary and sufficient to decide whether or not parameters are generically identifiable in a general mixed graph.

Introduce a general algebraic framework for performing identifiability computations for graphical models.

- Capable of testing direct effects, total effects, path-specific effects, error variances and covariances (Ω parameters).
- Provides certificates if a given parameter is not identifiable.
- Capable of detecting algebraic d-identifiable parameters (d-to-one parameters).

Basic Computational Algebraic Geometry

Let k be a field. An affine variety is the common zero locus of polynomials $f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$.

$$
V\left(f_{1}, \ldots, f_{r}\right)=\left\{f_{1}=0, f_{2}=0, \ldots, f_{r}=0\right\}
$$

$$
V(1)=\emptyset
$$

$$
V(0)=k^{n}
$$

For linear polynomials $f_{i}, V\left(f_{1}, \ldots, f_{r}\right)$ is the solution space of an inhomogeneous system of linear equations. This variety is described parametrically applying Gauss Algorithm.

IDEALS

Given f_{1}, \ldots, f_{r} in $k\left[x_{1}, \ldots, x_{n}\right]$,

$$
\left\langle f_{1}, \ldots, f_{r}\right\rangle=\left\{\sum_{i=i}^{n} h_{i} f_{i} \mid h_{1}, \ldots, h_{n} \in k\left[x_{1}, \ldots, x_{n}\right]\right\}
$$

is the ideal generated by f_{1}, \ldots, f_{r}.

Theorem (Hilbert Basis Theorem)

If $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is an ideal, there exists f_{1}, \ldots, f_{r} such that

$$
\left\langle f_{1}, \ldots, f_{r}\right\rangle=I
$$

Rational Parametrization

Let $p_{1}\left(t_{1}, \ldots, t_{d}\right), \ldots, p_{n}\left(t_{1}, \ldots, t_{d}\right) \in k\left[t_{1}, \ldots, t_{d}\right]$. The set

$$
S=\left\{\left(p_{1}\left(a_{1}, \ldots, a_{d}\right), \ldots, p_{n}\left(a_{1}, \ldots, a_{d}\right)\right) \in k^{n} \mid\left(a_{1}, \ldots, a_{d}\right) \in k^{d}\right\}
$$

is called a rational parametrization (r.p.).

$$
I(S)=\left\{g \in k\left[x_{1}, \ldots, x_{n}\right] \mid g\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all }\left(a_{1}, \ldots, a_{n}\right) \in S\right\}
$$

$I(S)$ is the ideal of polynomial functions vanishing on S.

Theorem

If S is a r.p. and $I(S)=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ then S and $V\left(f_{1}, \ldots, f_{r}\right)$ differ by a set of dimension less than the dimension of S.

CUBIC PLANE CURVE

Let $S=\left\{\left(t^{2}+1, t^{3}+t\right) \mid t \in \mathbb{R}\right\}$. Then $I(S)=\left\langle y^{2}-x^{3}-x^{2}\right\rangle$

Projection and Elimination

For any ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ we consider the elimination ideal

$$
I_{m}=I \cap k\left[x_{m+1}, \ldots, x_{n}\right]
$$

and the projection $\pi_{m}: k^{n} \longrightarrow k^{n-m}$ given by

$$
\pi_{m}\left(a_{1}, \ldots, a_{n}\right)=\left(a_{m+1}, \ldots, a_{n}\right)
$$

Theorem

If k is algebraically closed, then $\overline{\pi_{m}(V(I))}=V\left(I_{m}\right)$.

Theorem

If $G=\left\{g_{1}, \ldots, g_{r}\right\}$ is a Gröbner basis of $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ with respect to the lexicographic ordering, then

$$
G_{m}=G \cap k\left[x_{m+1}, \ldots, x_{n}\right]
$$

is a Gröbner basis of $I_{m} \subset k\left[x_{m+1}, \ldots, x_{n}\right]$ w.r.t. lex.

Rational Implicitization

Theorem

Suppose k is an infinite field and we are given a rational map
$\phi: k^{m} \backslash Z \longrightarrow k^{n}$ given by

$$
\left(t_{1}, \ldots, t_{m}\right) \longmapsto\left(\frac{f_{1}(t)}{g_{1}(t)}, \ldots, \frac{f_{n}(t)}{g_{n}(t)}\right)
$$

with f_{i} and $g_{i} \in k\left[t_{1}, \ldots, t_{m}\right]$ and $Z=V\left(g_{1} \cdot g_{2} \cdots g_{n}\right)$. Let

$$
I=\left\langle g_{1} x_{1}-f_{1}, \ldots, g_{n} x_{n}-f_{n}, 1-g s\right\rangle \subset k\left[s, t_{1}, \ldots, t_{m}, x_{1}, \ldots, x_{n}\right]
$$

Then

$$
\overline{\operatorname{Im}(\phi)}=V\left(I_{m+1}\right)
$$

Implicitization of The unit Circle

Consider the parametrization of the unit circle given by the $2^{\text {nd }}$ intersection point of $y=t(x+1)$ with the circle:

$$
t \longmapsto\left(\frac{1-t^{2}}{t^{2}+1}, \frac{2 t}{t^{2}+1}\right)
$$

Let $I=\left\langle\left(t^{2}+1\right) x-\left(1-t^{2}\right),\left(t^{2}+1\right) y-2 t, 1-\left(t^{2}+1\right)^{2} s\right\rangle$. The set

$$
\left\{x^{2}+y^{2}-1, t y+x-1, t x+t-y, s-\frac{1}{2} x-\frac{1}{2}\right\}
$$

is a Gröbner basis with respect to lex $s>t>x>y$. Hence

$$
I_{2}=\left\langle x^{2}+y^{2}-1\right\rangle
$$

Identifiable Parameters

Let $\Theta \subseteq \mathbb{R}^{d}$ be a full dimensional parameter set.
Let $\phi_{1}, \ldots, \phi_{n} \in \mathbb{R}\left[t_{1}, \ldots, t_{d}\right]$, and $\Phi: \Theta \rightarrow \mathbb{R}^{n}$ be the function defined by $\Phi(\theta)=\left(\phi_{1}(\theta), \ldots, \phi_{n}(\theta)\right)^{T}$.

A parameter is a polynomial function $u: \Theta \rightarrow \mathbb{R}$ which is not constant on Θ.

The parameter u is identifiable if there exists a map $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $u(\theta)=\Psi \circ \Phi(\theta)$ for all $\theta \in \Theta$.

The parameter u is generically identifiable if there exists a map $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a dense open subset \mathcal{O} of Θ such that $u(\theta)=\Psi \circ \Phi(\theta)$ for all $\theta \in \mathcal{O}$.

Algebraic Approach

Given $\Phi: \Theta \rightarrow \mathbb{R}^{n}$ defined by $\Phi(\theta)=\left(\phi_{1}(\theta), \ldots, \phi_{n}(\theta)\right)^{T}$, we want to check if the parameter u is (generically) identifiable.

The vanishing ideal of $S \subseteq \mathbb{R}^{n}$ is the set

$$
\mathcal{I}(S):=\left\{g \in \mathbb{R}\left[p_{1}, \ldots, p_{n}\right]: g(\mathbf{a})=0 \text { for all } \mathbf{a} \in S\right\}
$$

Let $\tilde{\Phi}=\left(u, \phi_{1}, \ldots, \phi_{n}\right)^{T}: \Theta \rightarrow \mathbb{R}^{d+1}$.
Let $\mathbb{R}[q, \mathbf{p}]$ be the polynomial ring with one extra indeterminate corresponding to the parameter function u.

Let $\mathcal{I}(\tilde{\Phi}(\Theta))$ be the vanishing ideal of the image.

Parameter Identifiability

Theorem

Suppose that $g(q, \mathbf{p}) \in \mathcal{I}(\tilde{\Phi}(\Theta))$ is a polynomial such that q appears in this polynomial, $g(q, \mathbf{p})=\sum_{i=0}^{d} g_{i}(\mathbf{p}) q^{i}$ and $g_{d}(\mathbf{p})$ does not belong to $\mathcal{I}(\Phi(\Theta))$.
(1) If g is linear in $q, g=g_{1}(\mathbf{p}) q-g_{0}(\mathbf{p})$ then u is generically identifiable by the formula $u=\frac{g_{0}(\mathbf{p})}{g_{1}(\mathbf{p})}$. If, in addition, $g_{1}(\mathbf{p}) \neq 0$ for $\mathbf{p} \in \Phi(\Theta)$ then u is identifiable.
(2) If g has higher degree d in q, then u is algebraically d-identifiable (may or might not be identifiable).
(1) If no such polynomial g exists then the parameter u is not generically identifiable.

Computational Results

Theorem

Of the 64 mixed graphs on three vertices,

- there are exactly 31 graphs that are generically identifiable and 33 graphs that are not generically identifiable.
- The single-door criterion and instrumental variables form a complete method to generically identify direct causal effects for SEM models on three variables.

Computational Results

THEOREM

Of the 4096 mixed graphs on four variables

- exactly 1246 are generically identifiable, 6 are algebraically 2-identified, and 2844 are not generically identifiable.
- Of the 1246 generically identifiable models, exactly 1093 are generically identified by the single-door and instrumental variables criteria and the remaining 153 generically identified models contain direct causal effect parameters only identified by the algebraic method.
- There are exactly 729 bow-free models, each generically identified by the single-door criterion.

Structural Equation Models Web Site

http://www.shsu.edu/research/graphicalmodels/

Challenge 1

- Show that λ_{12} is generically identifiable.
- Do you know of a graphical criterion that can identify this parameter?
- Show that G is generically identifiable.

Challenge 2

- Show that λ_{24} and λ_{34} are generically identifiable.
- Do you know of a graphical criterion that can identify these parameters?
- Show that G is generically identifiable.

CHALLENGE 3

- Show that λ_{13} and λ_{23} are generically identifiable.
- Do you know of a graphical criterion that can identify these parameters?
- Show that G is generically identifiable.

Challenge 4

- Show that λ_{13} and λ_{23} are not generically identifiable.
- Show that the total effect of X_{1} on $X_{3}: \lambda_{12} \lambda_{23}+\lambda_{13}$ is generically identifiable.
- This total effect is not identified by the Back-Door criterion. Is there a graphical criterion that identifies this parameter?

Challenge 5

TAble: Algebraically 2-identified SEMs on four variables.

Directed edges Bidirected edges

$$
\begin{array}{ll}
1 \rightarrow 2,2 \rightarrow 3,3 \rightarrow 4 & 1 \leftrightarrow 2,1 \leftrightarrow 3,1 \leftrightarrow 4 \\
1 \rightarrow 2,2 \rightarrow 3,2 \rightarrow 4 & 1 \leftrightarrow 2,1 \leftrightarrow 3,1 \leftrightarrow 4 \\
1 \rightarrow 2,1 \rightarrow 4,2 \rightarrow 3 & 1 \leftrightarrow 2,1 \leftrightarrow 3,1 \leftrightarrow 4 \\
1 \rightarrow 2,1 \rightarrow 3,3 \rightarrow 4 & 1 \leftrightarrow 2,1 \leftrightarrow 3,1 \leftrightarrow 4 \\
1 \rightarrow 2,1 \rightarrow 3,2 \rightarrow 4 & 1 \leftrightarrow 2,1 \leftrightarrow 3,1 \leftrightarrow 4 \\
1 \rightarrow 2,1 \rightarrow 3,1 \rightarrow 4 & 1 \leftrightarrow 2,1 \leftrightarrow 3,1 \leftrightarrow 4
\end{array}
$$

Is there a combinatorial description of these mixed graphs?

