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Bayesian Networks

Bayesian networks can be described implicitly, by a set of
independence constraints that the distributions associated with
the model must satisfy, or parametrically, by an explicit mapping
of a set of parameters to the set of distributions.

Bayesian networks with hidden variables are usually defined
parametrically because the independent constraints on the
distribution over the observable variables are not easily
established.

Find the independent constraints on the distributions over
the observable variables implied by a Bayesian network
with hidden variables.
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Model Selection

A Bayesian approach to model selection is to compute
p(Data | Model) via integration over all possible parameter values
with which the model is compatible and to select a model that
maximizes this probability.

An asymptotic formula for the marginal likelihood known as the
Bayesian Information Criteria (BIC) can sometimes be applied.

Open question to prove the validity of the BIC for selecting models
among Bayesian networks with hidden variables.

Since the independence constraints on the distribution of the
observable variables usually vary from one model to another, they
can be used to distinguished between models.

Since these constraints are over the observable variables, their fit
to data can be measured directly with some statistical tests.

Computational Algebraic Statistics Workshop at AIM – p. 3



The P-structure [Geiger-Meek]
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No singularities
Use BIC to select between the models

Unlike the constraint for the naive Bayes model 2 3oo // 1 , the

constraints generated by the implicitation procedure for other naive
Bayes models did not seem to exhibit such a clear syntactic structure.
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Proposition 19 [Garcia-Stillman-Sturmfels]

Let G be a Bayesian network on n discrete random variables,
where the nodes r + 1, . . . , n correspond to hidden variables.

Let R[D] be the ring generated by pi1i2···in
.

Let R[D′] be the subring generated by pi1···ir+···+.

Let PG be the prime ideal of all homogeneous polynomials which
vanish on all distributions that factor according to G.

The set of all polynomial constraints which vanish on the
space of observable probability distributions is the prime
ideal QG = PG ∩ R[D′]

Conjecture 21

The prime ideal QG of any naive Bayes model G with r = 2 classes is
generated by the 3 × 3-subdeterminants of any two-dimensional table
obtained by flattening the n-dimensional table (pi1i2···in

).
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Cuadratic Constraints (1)
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Cuadratic Constraints (2)
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Cubic Constraints (1)
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Cubic Constraints (2)
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+ I
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∩ C[D′] = 0.

Q9 = I1⊥⊥2|{3,4} ∩ C[D′] if d4 = 2.

I = I1⊥⊥2|{3,4} =
∑

k0∈[d3]
Ik0

, where Ik0
is the ideal generated by

the 2 × 2-minors of the 2 d1 × d2-matrices (pijk0l).

V (Ik0
∩ C[D′]) = M2 where M2 is the variety of d1 × d2-matrices

of rank at most 2, given by the 3 × 3-subdeterminants of the
d1 × d2-matrix (pijk0+).
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Sextic Constraints
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Ilocal(G17) = Iglobal(G17) = I
1⊥⊥3|{2,4}

+ I
2⊥⊥4|3

This ideal is not radical in general, so Ilocal(G17) = PG17
∩ L.

If d4 = 2, Q8 = Ilocal(G17) ∩ C[D′] = I1⊥⊥3|{2,4} ∩ C[D′].

V (Q17) is an irreducible proper subvariety of the irreducible
variety V (Q8).
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Conjecture d1 = d4 = 2 (Q8 = 0) d2 = d3 = 3

The ideal Q17 is generated by 3 irreducible sextics polynomials.

Each j1, j2 ∈ [d2] specify two matrices Nj1 and Nj2

(

p1j11+ p1j12+ p1j13+

p2j11+ p2j12+ p2j13+

)

and
(

p1j21+ p1j22+ p1j23+

p2j21+ p2j22+ p2j23+

)

The irreducible sextic polynomial is given by

p+j11+U1V1 − p+j12+U2V2 + p+j13+U3V3.

Where Us is the determinant of the 2 × 2-minor of Nj1 obtained by
eliminating the s-th column, and Vs is the determinant of the
2 × 2-matrix N ′

j2
where the first column of N ′

j2
equals the s-th

column of Nj2 and the second column of N ′
j2

is the product of the
remaining two columns of Nj2 .
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