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ALGEBRAIC GEOMETRY APPLICATIONS TO GEOMETRIC

MODELING

Geometric modeling uses polynomials to build computer models for
industrial design and manufacture.

Algebraic geometry investigates the algebraic and geometric properties of
polynomials.
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BÉZIER CURVES

Bézier curves are parametric curves used in computer graphics to model
smooth curves. Fundamental objects in geometric modeling.

First introduced by Charles Hermite and Sergei Bernstein.

Widely publicized in the 1960’s by Pierre Bézier (Renault), and Paul
De Casteljau (Citroën) in the design of automobile bodies.

Used in animation software such as Adobe Flash to outline movement.

Used also in the design of fonts:

Quadratic Bézier curves are used in True Type fonts,

cubic Bézier curves are used in Type 1 fonts,

cubic Bézier curves are also used in the TEX fonts.
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BÉZIER CURVES

B(x) :=
d
∑

i=0

�

d

i

�

xi(1− x)d−i Pi, x ∈ [0,1]

where P0,P1, . . . ,Pd are (control) points in Rn (n= 2, 3).
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BÉZIER CURVES

B(x) :=
d
∑

i=0

�

d

i

�

xi(1− x)d−i Pi, x ∈ [0,1]

where P0,P1, . . . ,Pd are (control) points in Rn (n= 2, 3).

B(x) = (1− x)P0+ xP1

LINEAR PRECISION
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xi(1− x)d−i i

d
= x
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BÉZIER CURVES

B(x) :=
d
∑

i=0

�

d

i

�

xi(1− x)d−i Pi, x ∈ [0,1]

where P0,P1, . . . ,Pd are (control) points in Rn (n= 2, 3).

B(x) = (1−x)2P0+2x(1−x)P1+x2P2
ENDPOINT INTERPOLATION

B(0) = P0, B(1) = P2
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BÉZIER CURVES

B(x) :=
d
∑

i=0

�

d

i

�

xi(1− x)d−i Pi, x ∈ [0,1]

where P0,P1, . . . ,Pd are (control) points in Rn (n= 2, 3).

B(x) = (1− x)3P0+ 3x(1− x)2P1+
3x2(1− x)P2+ x3P3

CONVEX HULL

The curve B([0,1]) is
contained in the convex
hull of the control points.
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DE CASTELJAU’S ALGORITHM
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CONTROL POLYGONS

Let B(x) be the Bézier curve given by

B(x) =
d
∑

i=0

�

d

i

�

xi(1− x)d−ibi, with x ∈ [0, 1],

with b0,b1, . . . ,bd control points in Rn. The corresponding control
polygon is the union of the line segments b0,b1,b1,b2, . . . ,bd−1,bd.

GEOMETRICAL ASPECTS OF CONTROL POINTS 3

in Section 4 when we investigate the effect of systematically varying the weights of a patch
while keeping the control points and blending functions constant.

The control points and weights affect the shape of the patch which is the image of the
map F (1.1). For example, the convex hull property asserts that the image F (∆) of the
patch lies in the convex hull of the control points. To see this, note that if we set

βa(x) :=
waβa(x)∑

a∈A waβa(x)
,

then βa(x) ≥ 0 and 1 =
∑

a∈A βa(x). Then formula (1.1) becomes

F (x) =
∑

a∈A
βa(x)ba ,

so that F (x) is a convex combination of the control points and therefore lies in their convex
hull. In fact, if there is a point x ∈ ∆ at which no blending function vanishes, then any
point in the interior of the convex hull of the control points is the image F (x) of some
patch for some choice of weights. In this way, the convex hull property is the strongest
general statement that can be made about the location of a patch.

Another well-known manifestation of control points is the relation of a Bézier curve to
its control polygon. Fix a positive integer d and let A := { i

d
| i = 0, . . . , d} so that ∆ is

the unit interval. The blending functions of a Bézier curve are the Bernstein polynomials,

βi(x) (= β i
d
(x)) :=

(
d
i

)
xi(1 − x)d−i .

Given control points b0,b1, . . . ,bd, the control polygon of any Bézier curve with these
control points is the union of the line segments b0,b1, b1,b2, . . . , bd−1,bd between con-
secutive control points. Figure 1 displays two quintic plane Bézier curves with their control
polygons (solid lines). The convex hulls of the control points are indicated by the dashed

b5

b4

b3

b2

b1

b0

b5

b4

b3

b2

b1

b0

Figure 1. Quintic Bézier curves

lines. The first curve has no points of self intersection, while the second curve has one point
of self intersection. While this self intersection may be removed by varying the weights
attached to the control points, by Theorem 3.7 it is impossible to find weights so that a
curve with the first set of control points has a point of self intersection.
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VARIATION DIMINISHING PROPERTY

B(x) = (1− x)5b0+ 5x(1− x)4b1+10x2(1− x)3b2+

10x3(1− x)2b3+ 5x4(1− x)b4+ x5b5.

GEOMETRICAL ASPECTS OF CONTROL POINTS 3

in Section 4 when we investigate the effect of systematically varying the weights of a patch
while keeping the control points and blending functions constant.

The control points and weights affect the shape of the patch which is the image of the
map F (1.1). For example, the convex hull property asserts that the image F (∆) of the
patch lies in the convex hull of the control points. To see this, note that if we set

βa(x) :=
waβa(x)∑

a∈A waβa(x)
,

then βa(x) ≥ 0 and 1 =
∑

a∈A βa(x). Then formula (1.1) becomes

F (x) =
∑

a∈A
βa(x)ba ,

so that F (x) is a convex combination of the control points and therefore lies in their convex
hull. In fact, if there is a point x ∈ ∆ at which no blending function vanishes, then any
point in the interior of the convex hull of the control points is the image F (x) of some
patch for some choice of weights. In this way, the convex hull property is the strongest
general statement that can be made about the location of a patch.

Another well-known manifestation of control points is the relation of a Bézier curve to
its control polygon. Fix a positive integer d and let A := { i

d
| i = 0, . . . , d} so that ∆ is

the unit interval. The blending functions of a Bézier curve are the Bernstein polynomials,

βi(x) (= β i
d
(x)) :=

(
d
i

)
xi(1 − x)d−i .

Given control points b0,b1, . . . ,bd, the control polygon of any Bézier curve with these
control points is the union of the line segments b0,b1, b1,b2, . . . , bd−1,bd between con-
secutive control points. Figure 1 displays two quintic plane Bézier curves with their control
polygons (solid lines). The convex hulls of the control points are indicated by the dashed
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Figure 1. Quintic Bézier curves

lines. The first curve has no points of self intersection, while the second curve has one point
of self intersection. While this self intersection may be removed by varying the weights
attached to the control points, by Theorem 3.7 it is impossible to find weights so that a
curve with the first set of control points has a point of self intersection.

The number of points in which a Bézier
curve meets a line is bounded by
number of points in which its control
polygon meets the same line.

Generalizing this property to surfaces is
similar to the open problem of finding a
satisfactory multivariate generalization
of Descartes’ rule of signs.
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RATIONAL BÉZIER CURVES

Rational Bézier curves add adjustable weights to provide closer
approximations to arbitrary shapes.

BERNSTEIN POLYNOMIALS

βi;d(x) :=
�

d

i

�

xi(1− x)d−i

Given weights w0, w1, . . . , wd in R> and control points b0,b1, . . . ,bd in Rn,
the rational Bézier curve is

B(x) :=

∑d
i=0 wiβi;d(x) bi
∑d

i=0 wiβi;d(x)
: [0,1] −→ Rn .
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RATIONAL BÉZIER CURVES

B(x) =

∑d
i=0 wiβi;d(x) bi
∑d

i=0 wiβi;d(x)
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TORIC BÉZIER CURVES

For each i= 0, . . . , d redefine the Bernstein polynomial βi;d(x),

βi;d(x) := xi(d− x)d−i .

Substituting x = dy and multiplying by
�d

i

�

d−d for normalization, this
becomes the usual Bernstein polynomial.

Given weights w0, . . . , wd ∈ R> and control points b0, . . . ,bd ∈ Rn

(n= 2,3), the parametrized toric Bézier curve is defined by

B(x) :=

∑d
i=0 wiβi;d(x) bi
∑d

i=0 wiβi;d(x)
: [0, d] −→ Rn .

Differ from the rational Bézier curves in that the degree is encoded by
the domain. This linear reparametrization does not affect the
resulting curve.
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TORIC BÉZIER CURVE DEFORMATIONS

THEOREM (CRACIUN-G-SOTTILE)

Given control points in Rn and ε > 0, there is a choice of weights so that the
toric Bézier curve lies within a distance ε of the control polygon.

GEOMETRICAL ASPECTS OF CONTROL POINTS 3

in Section 4 when we investigate the effect of systematically varying the weights of a patch
while keeping the control points and blending functions constant.

The control points and weights affect the shape of the patch which is the image of the
map F (1.1). For example, the convex hull property asserts that the image F (∆) of the
patch lies in the convex hull of the control points. To see this, note that if we set

βa(x) :=
waβa(x)∑

a∈A waβa(x)
,

then βa(x) ≥ 0 and 1 =
∑

a∈A βa(x). Then formula (1.1) becomes

F (x) =
∑

a∈A
βa(x)ba ,

so that F (x) is a convex combination of the control points and therefore lies in their convex
hull. In fact, if there is a point x ∈ ∆ at which no blending function vanishes, then any
point in the interior of the convex hull of the control points is the image F (x) of some
patch for some choice of weights. In this way, the convex hull property is the strongest
general statement that can be made about the location of a patch.

Another well-known manifestation of control points is the relation of a Bézier curve to
its control polygon. Fix a positive integer d and let A := { i

d
| i = 0, . . . , d} so that ∆ is

the unit interval. The blending functions of a Bézier curve are the Bernstein polynomials,

βi(x) (= β i
d
(x)) :=

(
d
i

)
xi(1 − x)d−i .

Given control points b0,b1, . . . ,bd, the control polygon of any Bézier curve with these
control points is the union of the line segments b0,b1, b1,b2, . . . , bd−1,bd between con-
secutive control points. Figure 1 displays two quintic plane Bézier curves with their control
polygons (solid lines). The convex hulls of the control points are indicated by the dashed
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Figure 1. Quintic Bézier curves

lines. The first curve has no points of self intersection, while the second curve has one point
of self intersection. While this self intersection may be removed by varying the weights
attached to the control points, by Theorem 3.7 it is impossible to find weights so that a
curve with the first set of control points has a point of self intersection.

4 G. CRACIUN, L. GARCÍA-PUENTE, AND F. SOTTILE

We will also show that the control polygon may be approximated by a Bézier curve. We
state a simplified version of Theorem 4.4 from Section 4.

Theorem. Given control points in Rn for a Bézier curve and some number ε > 0, there
is a choice of weights so that the image F [0, 1] of the Bézier curve lies within a distance ε
of the control polygon.

For example, we display one of the quintic curves from Figure 1, but with weights on b0—
b5 of (1, 202, 203, 203, 202, 1) and (1, 3002, 3003, 3003, 3002, 1), respectively. In the second we
do not draw the control polygon, for that would obscure the curve.
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1.1. Toric Patches. Krasauskas [14] introduced toric patches as a generalization of the
classical Bézier and tensor product patches. These are based upon toric varieties from
algebraic geometry and may have shape any polytope with integer vertices. The articles [3,
18] provide an introduction to toric varieties for geometric modeling.

A polytope ∆ is defined by its facet inequalities

∆ = {x ∈ Rd | 0 ≤ hi(x) , i = 1, . . . , "} .

Here, ∆ has " facets (faces of maximal dimension) and for each i = 1, . . . , ", hi(x) = vi·x+ci

is the linear function defining the ith facet, where vi ∈ Zd is the (inward oriented) primitive
vector normal to the facet and ci ∈ Z.

For example, if our polytope is the triangle with vertices (0, 0), (d, 0), and (0, d),

(1.3) d := {(x, y) ∈ R2 | 0 ≤ x, y and 0 ≤ d − (x + y)} ,

then we have h1 = x, h2 = y, and h3 = d − x − y. Here, d is the unit triangle with
vertices (0, 0), (1, 0), and (0, 1) scaled by a factor of d.

Let A ⊂ ∆ ∩ Zd be any subset of the integer points of ∆ which includes its vertices. For
every a ∈ A, Krasauskas defined the toric Bézier function

(1.4) βa(x) := h1(x)h1(a)h2(x)h2(a) · · ·h!(x)h!(a) ,

which is non-negative on ∆ and the collection of all βa has no common zeroes on ∆. These
are blending functions for the toric patch of shape A. If we choose weights w ∈ RA and
multiply the formula (1.4) by wa, we obtain blending functions for the toric patch of shape
(A, w).
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FACTORIZATION OF THE TORIC BÉZIER CURVE MAP

Let
d ⊂ Rd+1 be the standard simplex of dimension d with

homogeneous coordinates

[z0, z1, . . . , zd] :=
1

∑d
i=0 zi

(z0, z1, . . . , zd) .

The map B(x) =

∑d
i=0 wiβi;d(x) bi
∑d

i=0 wiβi;d(x)
: [0, d]→ Rn admits the factorization:

B(x) : [0, d]
β
−→ d w·−−→ d π−→ Rn , where

β : [0, d]→ d
, x 7−→ [β0;d(x),β1;d(x), . . . ,βd;d(x)].

w·: d→ d
, [z0, z1, . . . , zd] 7−→ [w0z0, w1z1, . . . , wdzd] .

π: Rd+1→ Rn, (z0, . . . , zd) 7−→
∑d

i=0 zi bi .
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FACTORIZATION OF THE TORIC BÉZIER CURVE MAP

B(x) : [0, d]
β
−→ d w·−−→ d π−→ Rn ,

X = β([0, d]) is the positive real part of the rational normal curve.
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RATIONAL NORMAL CURVES

X = β([0, d]) is the positive real part of the rational normal curve.

The (affine) rational normal curve is the image of x 7−→ (x, x2, . . . , xd).

When d= 3, this curve is called the
twisted cubic.

Defined parametrically by

x 7−→ (x, x2, x3),

and implicitly by the equations

Y − X2 = 0, Z− X3 = 0.
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PROOF BY PICTURE

THEOREM (CRACIUN-G-SOTTILE)

Given control points in Rn and ε > 0, there is a choice of weights so that the
toric Bézier curve lies within a distance ε of the control polygon.

t = 1

π

!

t = 3

π

!

t = 9

π

!

Figure 1: Toric degenerations of a toric rational Bézier cubic.

1
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RATIONAL BÉZIER SURFACE PATCHES

Example: Bézier triangles

Bézier triangles are toric surface patches.

Set A := {(i, j) ∈ N2 | i ≥ 0, j ≥ 0, n − i − j ≥ 0}, then

w(i,j)β(i,j) := n!
i!j!(n−i−j)!x

iyj(n − x − y)n−i−j.

These are essentially the Bernstein poly-
nomials, which have linear precision.

The corresponding toric variety is the
Veronese surface of degree n.

Choosing control points, get Bézier tri-
angle of degree n.

This picture is a cubic Bézier triangle.

Frank Sottile, Texas A&M University 6

rational Bézier triangular patch rational Bézier rectangular patch
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MULTI-SIDED PATCHES

Contemporary Mathematics

Smoothness, Fairness and the need for better multi-sided patches

Jörg Peters

ABSTRACT. This paper surveys the key achievements and outstanding challenges of con-

structing smooth surfaces for geometric design. The focus here is on explicit methods in

parametric form. In particular, recent insights into the curvature magnitude and distribu-

tion of surfaces generated by existing algorithms, based on generalized subdivision and on

splines, are illustrated and corresponding research questions are formulated. These chal-

lenges motivate the search for alternative approaches to multi-sided patch constructions.

1. The need for multi-sided patches

If all smooth surfaces could be modeled by a checkerboard mesh such that every mesh

node is surrounded by four quadrilaterals, we would simply parametrize them by tensor-

product splines and the question, how to create everywhere smooth surfaces, would be

simple to answer from standard spline theory [dB87]:use bidgree to obtain th order

smoothness. However, many surfaces have arbitrary local connectivity and global topo-

logical genus and such surfaces, meshes must, already by the Euler count, either include

-valent vertices where , or -sided facets. Removal of the offending vertices or

facets leads to holes in the mesh. Typically, we can assume that these holes are isolated,

since there exist a number of refinement strategies of an input mesh that create only addi-

tional mesh nodes that are 4-valent (e.g. [CC78]). Since we can associate tensor-product

splines with all the 4-valent nodes nodes, we are left with the task of filling -sided holes

in an otherwise smooth, regularly parametrized surface.

Key words and phrases. Differential geometry, surfaces, continuity, fairness, -sided holes.

supported in part by NSF Grant #9457806-CCR..

FIGURE 1. Multi-sided patches are needed to fill these holes.

c 0000 (copyright holder)
1

3

1 Multi-sided patches in blending

Modeling with Multi-Sided Patches

Toric patches

Krasauskas defined toric patches X∆, which are a class of multi-sided

patches that generalize Bézier patches.

For these, A is the set of integer points in polytope ∆.

Basis functions are a natural generalization of the Bernstein polynomials.

Toric Variety (projected) Toric Patch

Frank Sottile, Texas A&M University 8
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TORIC BÉZIER SURFACE PATCHES OF SHAPE ∆

A polygon ∆⊂ R2 with integer vertices is given by side inequalities

∆=
¦

(x, y) ∈ R2 | hs(x, y) := bsx+ csy+ ds ≥ 0, for each side s of ∆
©

,

where (bs, cs) is an inward pointing primitive normal vector.

For each a ∈A :=∆∩Z2, define a toric Bézier function

βa,A (x,y) :=
∏

s side of ∆
hs(x, y)hs(a) :∆−→ R.

Given positive weights w=
�

wa | a ∈A
	

⊂ R> and control points
B = {ba | a ∈A} ⊂ Rn, the toric Bézier surface of shape ∆ is
parametrized by

FA ,w,B(x) :=

∑

a∈A waβa,A (x) ba
∑

a∈A waβa,A (x)
:∆−→ Rn.
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TORIC BÉZIER TRIANGLES

Examples

Rectangular Lattices

(0,0) (m,0)• •
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m
)(l
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(n ! t )n!l

m mnn

Triangular Lattices
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Example: Bézier triangles

Bézier triangles are toric surface patches.

Set A := {(i, j) ∈ N2 | i ≥ 0, j ≥ 0, n − i − j ≥ 0}, then

w(i,j)β(i,j) := n!
i!j!(n−i−j)!x

iyj(n − x − y)n−i−j.

These are essentially the Bernstein poly-
nomials, which have linear precision.

The corresponding toric variety is the
Veronese surface of degree n.

Choosing control points, get Bézier tri-
angle of degree n.

This picture is a cubic Bézier triangle.

Frank Sottile, Texas A&M University 6F(s, t) =
∑

k,l

� n
k,l

�

sktl(n− s− t)n−k−l

nn bkl
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TORIC BÉZIER RECTANGLES

Examples

Rectangular Lattices
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FACTORIZATION OF THE TORIC BÉZIER SURFACE MAP

Let
A ⊂ RA is the standard simplex of dimension |A | − 1 with

homogeneous coordinates

[za | a ∈A ] :=
1

∑

a∈A za
(za | a ∈A ) ,

The map F(x) :∆A −→ Rn admits the following factorization:

F(x) : ∆A
βA−−→ A w·−−→ A πB−−→ Rn ,

βA (x) := [βa,A (x) | a ∈A ] : ∆A →
A

,

w·[za | a ∈A ] := [waza | a ∈A ] :
A → A

.

πB(z) :=
∑

a∈A za ba : RA → Rn.
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FACTORIZATION OF THE TORIC BÉZIER SURFACE MAP

The map F(x) :∆A −→ Rn admits the following factorization:

F(x) : ∆A
βA−−→ A w·−−→ A πB−−→ Rn ,

The image XA := βA (∆A )⊂
A

is the positive part of the toric
variety associated to the polygon ∆A

Acting on XA by the map w· gives a translated toric variety XA ,w

We call XA ,w a lift of the toric Bézier patch YA ,w,B := πB(XA ,w)
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TORIC BÉZIER TRIANGLES

Examples

Rectangular Lattices
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Example: Bézier triangles

Bézier triangles are toric surface patches.

Set A := {(i, j) ∈ N2 | i ≥ 0, j ≥ 0, n − i − j ≥ 0}, then

w(i,j)β(i,j) := n!
i!j!(n−i−j)!x

iyj(n − x − y)n−i−j.

These are essentially the Bernstein poly-
nomials, which have linear precision.

The corresponding toric variety is the
Veronese surface of degree n.

Choosing control points, get Bézier tri-
angle of degree n.

This picture is a cubic Bézier triangle.

Frank Sottile, Texas A&M University 6F(s, t) =
∑

k,l

� n
k,l

�

sktl(n− s− t)n−k−l

nn bkl

The corresponding toric variety is a Veronese surface of degree n.
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TORIC BÉZIER RECTANGLES
Examples

Rectangular Lattices
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Triangular Lattices
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The corresponding toric variety is a is the Segre product of two rational
normal curves of degrees n and m.
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WHAT IS THE SIGNIFICANCE OF THE CONTROL NET?

These control nets encode certain C0 spline surfaces called regular
control surfaces. While not unique, regular control surfaces are exactly
the possible limiting positions of a Bézier patch when the weights are
allowed to vary.
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REGULAR SUBDIVISIONS

LetA ⊂ R2 and λ:A → R some function.

Let Pλ := conv{(a,λ(a)) | a ∈A} ⊂ R3.

Each face of Pλ has an outward pointing normal vector, and its upper
facets are those whose normal has positive last coordinate.

The regular polyhedral subdivision Tλ of ∆A induced by λ is given by
the projection of the upper facets back to R2.

TORIC DEGENERATIONS OF BÉZIER PATCHES 7

4. Regular polyhedral decompositions

We recall the definitions of regular (or coherent) polyhedral subdivisions from geometric
combinatorics, which were introduced in [7, § 7.2]. Because subdivision has a different
meaning in modeling, we instead use the term decomposition. Let A ⊂ R2 be a finite set
and suppose that λ : A → R is a function. We use λ to lift the points of A into R3. Let
Pλ be the convex hull of the lifted points,

Pλ = conv{(a,λ(a)) | a ∈ A} ⊂ R3.

Each face of Pλ has an outward pointing normal vector, and its upper facets are those
whose normal has positive last coordinate. If we project these upper facets back to R2,
they cover the polygon ∆A and are the facets of the regular polyhedral decomposition Tλ

of ∆A induced by λ. (Lower facets also induce a regular polyhedral subdivision, which
equals T−λ, and so it is no loss of generality to work with upper facets.)

The edges and vertices of Tλ are the images of the edges and vertices lying on upper
facets. Here are the upper facets and regular polyhedral decompositions given by two
different lifting functions for the points A underlying a biquadratic tensor product patch.

More generally, a polyhedral decomposition of ∆A is a collection T of polygons, line
segments, and points of A, whose union is ∆A, where any edge, vertex, or endpoint of
a segment also lies in T , and any two elements of T are either disjoint or their intersection
is an element of T . A decomposition T is regular if it is induced from a lifting function.

A decomposition S of the configuration A of points is a collection S of subsets of A
called faces. The convex hulls of these faces are required to be the polygons, line segments,
and vertices of a polyhedral decomposition T (S) of ∆A. In particular, the intersection of
any face with the convex hull ∆F of another face F of S is either empty, a vertex of ∆F ,
or the points of F lying in some edge of ∆F . A face F is a facet, edge, or vertex of S as
its convex hull ∆F is a polygon, line segment, or vertex. The decomposition S is regular
if the polyhedral decomposition T (S) is regular.

Below are two different lifting functions that induce the same regular polyhedral de-
composition of the 2 × 2 square underlying a biquadratic patch, but different regular
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LATTICE POINT DECOMPOSITIONS

A decomposition D of the configurationA of points is a collection D of
subsets ofA called faces.

The convex hulls of these faces are required to be the faces of a
polyhedral subdivision T (D) of ∆A .

The decomposition D is regular if the polyhedral subdivision T (D) is
regular.

8 L. GARCÍA-PUENTE, F. SOTTILE, AND C-G. ZHU

decompositions of A.

The center point of A does not lie in any face of the decomposition on the right as its lift
does not lie on any upper facet.

Here is a one-dimensional example. Let λ take the values {0, 1, 2, 0} on the points
{0, 1, 2, 3} underlying rational cubic Bézier curves. This induces a regular decomposition
of {0, 1, 2, 3} with facets

(7) {0, 1, 2} and {2, 3} .

5. Regular control surfaces

Regular control surfaces are possible limiting positions of patches. We first illustrate
these notions on a rational cubic curve in the plane. The curves of (3) have weights
(1, 4, 4, 1) on the Bernstein polynomials β0;3, β1;3, β2;3, β3;3, respectively. The lifting function
inducing the decomposition (7) gives a family of weights (1, 4t, 4t2, 1) as t ∈ R> varies.
When t = 5, and we use the control points of (3), we get the following curves.

(8)

b2

b1

b0 b3

b1

b2

b0 b3

To consider the limit as t → ∞, write the Bernstein polynomials in homogeneous form as
βi;3 := uiv3−i for i = 0, . . . , 3, for then the cubic curve is the image of points (u, v) ∈ (R>)2.

Limiting positions are given by restrictions to the facets of the decomposition (7). Mul-
tiplying the βi;3 by the weights and restricting to each facet, we get basis functions

{v3, 4tv2u, 4t2vu2} , and {4t2vu2, u3} .

These give rational Bézier curves

v3b0 + 4tv2ub1 + 4t2vu2b2

v3 + 4tv2u + 4t2vu2
and

4t2vu2b2 + u3b3

4t2vu2 + u3
.

Dividing out the common factor of v from the first and replacing tu by u, and similarly
dividing out u2 from the second and replacing vt2 by v, we get

v2b0 + 4vub1 + 4u2b2

v2 + 4vu + 4u2
and

4vb2 + ub3

4v + u
,
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CONTROL SURFACES

LetA ⊂ Z2 be a finite set, w ∈ RA> be weights andB = {ba | a ∈A} be
control points for a toric patch YA ,w,B of shapeA .

Let D be a decomposition ofA . The control surface induced by D is the
union

YA ,w,B(D) :=
⋃

F∈D
YF ,w|F ,B|F ,

Faces of toric patches are again toric patches.

The control surface YA ,w,B(D) is a C0 spline surface.

YA ,w,B(D) is regular if the decomposition D is regular.
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CONTROL CURVES

Given the regular decomposition {0, 1,2}, {2, 3} of {0, 1,2, 3} and the
following two rational cubic Bézier planar curves.

4 L. GARCÍA-PUENTE, F. SOTTILE, AND C-G. ZHU

stresses the separate role of functions and weights.) Given weights w0, . . . , wd ∈ R> and
control points b0, . . . ,bd ∈ Rn (n = 2, 3), we have the parameterized rational Bézier curve

F (x) :=

∑d
i=0 wibiβi;d(x)∑d

i=0 wiβi;d(x)
: [0, d] −→ Rn .

Our domain is [0, d] rather than [0, 1], for this is the natural convention for toric patches.
The control polygon of the curve is the union of segments b0,b1, . . . ,bd−1,bd. Here are

two rational cubic Bézier planar curves with their control polygons.

(3)

b2

b1

b0 b3

b1

b2

b0 b3

There are two standard ways to extend this to surfaces. The most straightforward gives
rational tensor product patches. Let c, d be positive integers and for each i = 0, . . . , c and
j = 0, . . . , d let w(i,j) ∈ R> and b(i,j) ∈ R3 be a weight and a control point. The associated
rational tensor product patch of bidegree (c, d) is the image of the map [0, c]× [0, d] → R3,

F (x, y) :=

∑c
i=0

∑d
j=0 w(i,j)b(i,j)βi;c(x)βj;d(y)

∑c
i=0

∑d
j=0 w(i,j)βi;c(x)βj;d(y)

.

Triangular Bézier patches are another extension. Set

d := {(x, y) ∈ R2 | 0 ≤ x, y and x + y ≤ d}
and set A := d ∩ Z2, the points with integer coordinates (lattice points) in the triangle
d . For (i, j) ∈ A, we have the bivariate Bernstein polynomial

β(i,j);d(x, y) := xiyj(d − x − y)d−i−j .

Given weights w = {w(i,j) | (i, j) ∈ A} and control points B = {b(i,j) | (i, j) ∈ A}, the
associated triangular rational Bézier patch is the image of the map d → R3,

F (x, y) :=:

∑
(i,j)∈A w(i,j)b(i,j)β(i,j);d(x, y)
∑

(i,j)∈A w(i,j)β(i,j);d(x, y)
.

The control points of a Bézier curve are naturally connected in sequence to give the
control polygon, which is a piecewise linear caricature of the curve. For a surface patch
there are however many ways to interpolate the control points by edges to form a control
net. There also may not be a way to fill in these edges with polygons to form a polytope.
Even when this is possible, the significance of this structure for the shape of the patch is
not evident, except in special cases. For example, if the control points are the graph of a
convex function over the lattice points, then the patch is convex [3, 4]. For such control
points, the obvious net consists of the upward-pointing facets of the convex hull of the
graph. This is the net of the bicubic patches in Figure 1.

The regular control curves are

TORIC DEGENERATIONS OF BÉZIER PATCHES 9

which are rational quadratic and linear Bézier curves. With the control points of (8) these
are,

(9)

b2

b1

b0 b3

b1

b2

b0 b3

These are regular control surfaces of the corresponding curves induced by the decomposi-
tion (7). We explain this in general.

Let A ⊂ Z2 be a finite set, w ∈ RA
> be weights and B = {ba | a ∈ A} be control points

for a toric patch YA,w,B of shape A.
Suppose that we have a decomposition S of A. We may use the weights w and control

points B indexed by elements of a facet F as weights and control points for a toric patch
of shape F , written YF ,w|F ,B|F . In fact, this can be done for any face of S. The union

YA,w,B(S) :=
⋃

F∈S
YF ,w|F ,B|F ,

of these patches is the control surface induced by the decomposition S. As the domain of
a patch of shape F is the convex hull ∆F of F and faces of toric patches are again toric
patches, the control surface of a patch induced by a decomposition is naturally a C0 spline
surface. A control surface YA,w,B(S) is regular if the decomposition S is regular.

Here are the control surfaces of the bicubic patches from Figure 1.

These control surfaces are regular as they are induced by the 3× 3 grid, which is a regular
decomposition. Below is the irregular decomposition of the 3 × 3 grid from (1) and a
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REGULAR CONTROL SURFACES FOR RATIONAL BICUBIC

PATCHES
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TORIC DEGENERATIONS OF BÉZIER PATCHES

LUIS DAVID GARCÍA-PUENTE, FRANK SOTTILE, AND CHUNGANG ZHU

Abstract. The control polygon of a Bézier curve is well-defined and has geometric
significance—there is a sequence of weights under which the limiting position of the curve
is the control polygon. For a Bézier surface patch, there are many possible polyhedral con-
trol structures, and none are canonical. We propose a not necessarily polyhedral control
structure for surface patches, regular control surfaces, which are certain C0 spline surfaces.
While not unique, regular control surfaces are exactly the possible limiting positions of a
Bézier patch when the weights are allowed to vary.

1. Introduction

In geometric modeling of curves and surfaces, the overall shape of an individual patch is
intuitively governed by the placement of control points, and a patch may be finely tuned
by altering the weights of the basis functions—large weights pull the patch towards the
corresponding control points. The control points also have a global meaning as the patch
lies within the convex hull of the control points, for any choice of weights.

This convex hull is often indicated by drawing some edges between the control points.
The rational bicubic tensor product patches in Figure 1 have the same weights but different
control points, and the same 3 × 3 quadrilateral grid of edges drawn between the control
points. Unlike the control points or their convex hulls, there is no canonical choice of these

Figure 1. Two rational bicubic patches.
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edges. We paraphrase a question posed to us by Carl de Boor and Ron Goldman: What
is the significance for modeling of such control structures (control points plus edges)?

We provide an answer to this question. These control structures, the triangles, quadri-
laterals, and other shapes implied by these edges, encode limiting positions of the patch
when the weights assume extreme values. By Theorems 5.1 and 5.2, the only possible
limiting positions of a patch are the control structures arising from regular decompositions
(see Section 4) of the points indexing its basis functions and control points, and any such
regular control structure is the limiting position of some sequence of patches.

Here are rational bicubic patches with the control points of Figure 1 and extreme weights.

Each is very close to a composite of nine bilinear tensor product patches—corresponding
to the nine quadrilaterals in their control structures. The control points of each limiting
bilinear patch are the corners of the corresponding quadrilateral. These are all planar
patches on the left, while only the corner quadrilaterals are planar on the right.

The control structure in these examples is a regular decomposition of the 3 × 3 grid
underlying a bicubic patch. It is regular as it is induced from the upper convex hull of
the graph of a function on the 16 grid points. Such a function could be 0 at the four
corners, 2 at the four interior points and 1 at the remaining eight edge points. We show
this decomposition on the left below together with an irregular decomposition on the right.

(1)

(If the second decomposition were the upper convex hull of the graph of a function on the
grid points, and we assume—as we may—that the central square is flat, then the value of
the function at a vertex is lower than the values at a clockwise neighbor, which is impossible
outside of Escher woodcuts.)

Such control structures and limiting patches were considered in [2], but were restricted
to triangulations—this restriced the scope of the results. Our results hold in complete gen-
erality and like those of [2], rely upon a construction in computational algebraic geometry
called a toric degeneration [7, Ch. 8.3.1].

While our primary interest is to explain the meaning of control nets for the classical
rational tensor product patches and rational Bézier triangles, we work in the generality of
Krasauskas’ toric Bézier patches [11, 12]. The reason for this is simple—any polygon may
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which are rational quadratic and linear Bézier curves. With the control points of (8) these
are,

(9)
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b1

b0 b3

b1

b2

b0 b3

These are regular control surfaces of the corresponding curves induced by the decomposi-
tion (7). We explain this in general.

Let A ⊂ Z2 be a finite set, w ∈ RA
> be weights and B = {ba | a ∈ A} be control points

for a toric patch YA,w,B of shape A.
Suppose that we have a decomposition S of A. We may use the weights w and control

points B indexed by elements of a facet F as weights and control points for a toric patch
of shape F , written YF ,w|F ,B|F . In fact, this can be done for any face of S. The union

YA,w,B(S) :=
⋃

F∈S
YF ,w|F ,B|F ,

of these patches is the control surface induced by the decomposition S. As the domain of
a patch of shape F is the convex hull ∆F of F and faces of toric patches are again toric
patches, the control surface of a patch induced by a decomposition is naturally a C0 spline
surface. A control surface YA,w,B(S) is regular if the decomposition S is regular.

Here are the control surfaces of the bicubic patches from Figure 1.

These control surfaces are regular as they are induced by the 3× 3 grid, which is a regular
decomposition. Below is the irregular decomposition of the 3 × 3 grid from (1) and a
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FIRST MAIN THEOREM

Let λ:A → R be a lifting function and w= {wa ∈ R> | a ∈A} a set of
weights.

Define wλ(t) := {tλ(a)wa | a ∈A}.

These weights are used to define a toric degeneration of the patch,

FA ,w,B ,λ(x; t) :=

∑

a∈A tλ(a)waβa(x) ba
∑

a∈A tλ(a)waβa(x)
.

Let Dλ be the regular decomposition ofA induced by λ.

THEOREM

Every regular control surface is the limit of the corresponding
patch under a toric degeneration.

lim
t→∞

YA ,w,B ,λ(t) = YA ,w,B(Dλ).
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SECOND MAIN THEOREM

THEOREM

LetA ⊂ Zm be a finite set andB = {ba | a ∈A} ⊂ Rn a set of control
points. If Y ⊂ Rn is a set for which there is a sequence w1, w2, . . . of weights
so that

lim
i→∞

YA ,wi,B = Y .

then there is a lifting function λ:A → R and a weight w ∈ RA> such that
Y = YA ,w,B(Dλ), a regular control surface.
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SECOND MAIN THEOREM

Regular control surfaces are exactly the possible limits of toric patches
when the control pointsB are fixed but the weights w are allowed to vary.

The irregular control surface below cannot be the limit of toric Bézier
patches.

10 L. GARCÍA-PUENTE, F. SOTTILE, AND C-G. ZHU

corresponding irregular control surface.

(10) A

CB !

o p q r

A
B """"#

C
$
$%

&

&

&

o p q r

The central quadrilateral A in the decomposition corresponds to the bilinear patch at the
top, the triangle B in the decomposition corresponds to the indicated flat triangle, and the
triangle C with points o, p, q, r along one edge corresponds to the singular ruled cubic in
the surface. The polygonal frame formed by the corresponding control points on the right
is the control polygon for this edge of C, which is a rational cubic Bézier curve.

We show that regular control surfaces are exactly the possible limits of toric patches
when the control points B are fixed but the weights w are allowed to vary. In particular,
the irregular control surface (10) cannot be the limit of toric Bézier patches.

Let λ : A → R be a lifting function. We use this and a given set of weights w = {wa ∈
R> | a ∈ A} to get a set of weights which depends upon a parameter, wλ(t) := {tλ(a)wa |
a ∈ A}. These weights are used to define a toric degeneration of the patch,

FA,w,B,λ(x; t) :=

∑
a∈A tλ(a)wabaβa(x)∑
a∈A tλ(a)waβa(x)

.

Let Sλ be the regular decomposition of A induced by λ. Our first main result is that
the regular control surface YA,w,B(Sλ) induced by Sλ is the limit of the patches YA,w,B,λ(t)
parameterized by FA,w,B,λ(x; t) as t → ∞.

This limit is with respect to the Hausdorff distance between two subsets of R3. Two
subsets X and Y of R3 are within Hausdorff distance ε if for every point x of X there is
some point y of Y within a distance ε of x, and vice-versa. With this notion of distance,
we have the following result.

Theorem 5.1. lim
t→∞

YA,w,B,λ(t) = YA,w,B(Sλ).

That is, for every ε > 0 there is a number M such that if t ≥ M , then the patch
YA,w,B,λ(t) and the regular control surface YA,w,B(Sλ) are within Hausdorff distance ε.

We illustrate Theorem 5.1 on a bicubic patch. On the left below are the weights of
a bicubic patch, in the center are the values of a lifting function, and the corresponding
regular decomposition is on the right.
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