Linear Precision for Toric Patches

Luis Garcia-Puente

Department of Mathematics and Statistics
Sam Houston State University

First International Workshop on Algebraic Geometry and Approximation Theory

Bézier curves

Bernstein polynomials
 $B_{i}^{n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}$

Parametric definition

$$
C(t)=\sum_{i=0}^{n} p_{i} B_{i}^{n}(t), \quad t \in[0,1]
$$

where $p_{0}, p_{1}, \ldots, p_{n}$ are control points in some affine space.

Properties of Bézier curves

Affine invariance

Let $T: \mathbb{A}^{m} \longrightarrow \mathbb{A}^{m}$ be an Affine map. Then

$$
T(C(t))=T\left(\sum_{i=0}^{n} p_{i} B_{i}^{n}(t)\right)=\sum_{i=0}^{n} T\left(p_{i}\right) B_{i}^{n}(t)
$$

Convex hull property

The curve $C([0,1])$ is contained in the convex hull of the control points

Endpoint interpolation

Properties of Bézier curves

More properties

- Symmetry
- Pseudo-local control
- Subdivision
- Recursive evaluation

Linear precision

$$
\sum_{i=0}^{n} \frac{i}{n} B_{i}^{n}(t)=t
$$

$$
0(1-t)^{3}+t(1-t)^{2}+2 t^{2}(1-t)+t^{3}=t
$$

Rectangular Bézier surfaces

Parametric representation

$$
\sum_{i=0}^{m} \sum_{j=0}^{n} B_{i}^{m}(s) B_{j}^{n}(t) p_{i j}, \quad 0 \leq s, t \leq 1
$$

Triangular Bézier surfaces

Parametric representation

$$
\sum_{i+j+k=n} \frac{n!}{i!j!k!} u^{i} v^{j} w^{k} p_{i j k}, \quad 0 \leq u, v, w \leq 1 \text { and } u+v+w=1
$$

Patches

Data

- $\mathcal{A} \subset \mathbb{Z}^{d}$ finite subset
- $\Delta=\operatorname{conv}(\mathcal{A})$ polytope of dimension d in \mathbb{R}^{d}

Patch

A patch $\beta=\left\{\beta_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\right\}$ is a collection of non-negative (blending or basis) functions indexed by \mathcal{A} with common domain Δ and no base points in their domain.

Parametric patch

A set $\left\{\mathbf{b}_{\mathbf{a}} \in \mathbb{R}^{\ell} \mid \mathbf{a} \in \mathcal{A}\right\}$ of control points indexed by \mathcal{A} gives a parametric map

$$
\frac{\sum_{\mathbf{a} \in \mathcal{A}} \beta_{\mathbf{a}}(x) \mathbf{b}_{\mathbf{a}}}{\sum_{\mathbf{a} \in \mathcal{A}} \beta_{\mathbf{a}}(x)}
$$

Multi-sided patches

Toric patches

Generalization of Bézier patches

Based on toric varieties

Depend on a polytope and some weights

top view

side view

Toric Bézier patches

- Let $\Delta \subset \mathbb{R}^{2}$ be a lattice polygon.
- Edges of Δ define lines $h_{i}(\mathbf{t})=\left\langle\mathbf{n}_{i}, \mathbf{t}\right\rangle+c_{i}=0$, with inward oriented normal primitive lattice vectors \mathbf{n}_{i}.
- Let $\hat{\Delta}=\Delta \cap \mathbb{Z}^{2}$ be the set of lattice points of Δ
- Note $h_{i}(\mathbf{a})$ is a non-negative integer for all $\mathbf{a} \in \hat{\Delta}$.

A toric patch associated to Δ is a rational patch with domain Δ and basis functions

$$
\beta(s, t)=h_{1}^{h_{1}(\mathbf{a})} h_{2}^{h_{2}(\mathbf{a})} \cdots h_{r}^{h_{r}(\mathbf{a})}
$$

Properties toric Bézier patches

- Affine invariance
- Convex hull
- Boundaries are rational Bézier curves determined by boundary control points
- surfaces interpolate corner control points

Rimvydas Krasauskas

Which toric Bézier patches have linear precision?

Toric varieties

Monomials in d indeterminates

$$
x^{\mathbf{a}}:=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{d}^{a_{d}}, \quad\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in \mathbb{Z}^{d}
$$

Data

- $\mathcal{A} \subset \mathbb{Z}^{d}$ finite subset
- $\Delta=\operatorname{conv}(\mathcal{A})$ polytope of dimension d in \mathbb{R}^{d}
- $w=\left\{w_{\mathbf{a}} \in \mathbb{R}_{>} \mid \mathbf{a} \in \mathcal{A}\right\}$ set of positive weights indexed by \mathcal{A}

Monomial $\operatorname{map} \varphi_{\mathcal{A}, w}:\left(\mathbb{C}^{*}\right)^{d} \longrightarrow \mathbb{P}^{\mathcal{A}}$

$$
\varphi_{\mathcal{A}, w}: x \longrightarrow\left[w_{\mathbf{a}} x^{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\right]
$$

Translated toric variety

$Y_{\mathcal{A}, w}$ the Zariski closure of $\varphi_{\mathcal{A}, w}\left(\left(\mathbb{C}^{*}\right)^{d}\right)$

Toric patches

Non-negative part of a toric variety

$X_{\mathcal{A}, w}$ the Zariski closure of $\varphi_{\mathcal{A}, w}\left(\mathbb{R}_{>}^{d}\right)$

Definition

A Toric patch of shape (\mathcal{A}, w) is any patch β such that the closure X_{β} of the image of

$$
\beta: \Delta \longrightarrow \mathbb{R}^{\mathcal{A}}, \quad x \longmapsto[\beta \mathbf{a}(x) \mid \mathbf{a} \in \mathcal{A}]
$$

equals $X_{\mathcal{A}, w}$.

Linear precision

Definition

A patch $\left\{\beta_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\right\}$ has linear precision if the tautological map τ

$$
\tau:=\sum_{\mathbf{a} \in \mathcal{A}} \beta_{\mathbf{a}}(x) \mathbf{a}
$$

is the identity function on Δ.

Theorem

A toric patch has a unique reparametrization which has linear precision.

Definition

A toric patch has rational linear precision if its reparametrization having linear precision has blending functions that are rational functions.

Quadratic (rescaled) Bézier curve

Let $\mathcal{A}=\{0,1,2\}$ and $w=(1,2,1)$, then $X_{[0,2], w}$ is the image of

$$
t \mapsto\left[1,2 t, t^{2}\right], \quad t>0
$$

Let $\beta:[0,2] \rightarrow X_{[0,2], w}$ be given by

$$
t \longmapsto\left[(2-t)^{2}, 2 t(2-t), t^{2}\right], \quad t \in[0,2]
$$

The tautological map $\tau:[0,2] \rightarrow[0,2]$ is given by

$$
\frac{0 \cdot(2-t)^{2}+1 \cdot 2 t(2-t)+2 t^{2}}{(2-t)^{2}+2 t(2-t)+t^{2}}=\frac{4 t}{4}=t
$$

Logarithmic Toric Differential

Laurent polynomial

Let $\mathcal{A} \subset \mathbb{Z}^{d}$ be a finite subset and $w \in \mathbb{R}_{>}^{\mathcal{A}}$ be a system of weights, the the Laurent polynomial $f=f_{\mathcal{A}, w}$ is defined by

$$
f=f_{\mathcal{A}, w}:=\sum_{\mathbf{a} \in \mathcal{A}} w_{\mathbf{a}} x^{\mathbf{a}}
$$

Theorem

A toric patch of shape (\mathcal{A}, w) has rational linear precision if and only if the rational function $\psi_{\mathcal{A}, w}: \mathbb{C}^{d} \longrightarrow \mathbb{C}^{d}$ defined by

$$
D_{\text {torus }} \log f=\frac{1}{f}\left(x_{1} \frac{\partial}{\partial x_{1}} f, x_{2} \frac{\partial}{\partial x_{2}} f, \ldots, x_{d} \frac{\partial}{\partial x_{d}} f\right)
$$

is a birational isomorphism.

Tautological projection

Definition

Let $\mathcal{A} \subset \mathbb{R}^{d}$. Given a point $y=\left[y_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\right] \in \mathbb{R P}^{\mathcal{A}}$, if the sum

$$
\sum_{\mathbf{a} \in \mathcal{A}} y_{\mathbf{a}} \cdot(1, \mathbf{a}) \in \mathbb{R}^{d+1}
$$

is non-zero then it represents a point in $\mathbb{R} \mathbb{P}^{d}$.

This map is the tautological
 projection

$$
\pi: \mathbb{R P}^{\mathcal{A}}--\rightarrow \mathbb{R}^{d} .
$$

Geometry of Linear Precision

Universal map given by $\beta=\left\{\beta_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\right\}$
$\beta: \Delta \rightarrow \mathbb{R P}^{\mathcal{A}}, \quad \beta: x \longmapsto\left[\beta_{\mathbf{a}}(x) \mid \mathbf{a} \in \mathcal{A}\right]$

Let $X_{\beta}=\beta(\Delta)$, and $Y_{\beta}=\overline{X_{\beta}}$.
Theorem
If a patch $\beta=\left\{\beta_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\right\}$ has linear precision, then
(1) Y_{β} is a rational variety,
(2) almost all codimension d planes L containing the center $E_{\mathcal{A}}$ of the tautological projection meet Y_{β} in at most one point outside of $E_{\mathcal{A}}$.

Theorem

The blending functions for the toric patch X_{β} which have linear precision are given by the coordinates of the inverse of $\pi: X_{\beta} \longrightarrow \Delta$.

Algebraic Statistics

$X_{\mathcal{A}, w}$ the Zariski closure of $\varphi_{\mathcal{A}, w}\left(\mathbb{R}_{>}^{d}\right)$

Algebraic statistics

In statistics $\varphi_{\mathcal{A}, w}\left(\mathbb{R}_{>}^{d}\right)$ is known as as a log-linear model or discrete exponential family.

Theorem (Darroch and Ratcliff)

The inverse image of the tautological projection can be numerically obtained by the method know as iterative proportional fitting.

Theorem

A toric patch has rational linear precision if and only if the toric model $X_{\mathcal{A}, w}$ has maximum likelihood degree 1.

