What is Computational Algebraic Geometry?

Luis Garcia-Puente
Department of Mathematics and Statistics
Sam Houston State University

First International Workshop on Algebraic Geometry and Approximation Theory

Affine Varieties

Let k be a field. An affine variety is the common zero locus of polynomials $f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$.

$$
V\left(f_{1}, \ldots, f_{r}\right)=\left\{f_{1}=0, f_{2}=0, \ldots, f_{r}=0\right\}
$$

Trivial Examples

- $V(1)=\emptyset$
- $V(0)=k^{n}$

Linear Varieties

For linear polynomials $f_{i}, V\left(f_{1}, \ldots, f_{r}\right)$ is the solution space of an inhomogeneous system of linear equations. This variety is described parametrically applying Gauss Algorithm.

Planar Curves

The graph of the function $y=\frac{x^{3}-1}{x}$ is the variety $V\left(x y-x^{3}+1\right)$.

Let $f(x, y)=y^{2}-x^{3}-x^{2}+2 x-1$, then $V(f)$ is the plane curve:

More Examples

The twisted cubic $V\left(y-x^{2}, z-x^{3}\right)$

$$
V(x z, y z)=V(z) \cup V(x, y)
$$

Parametric Varieties

The Bézier curve $C \subset k^{2}$ parametrized by

$$
\begin{aligned}
& X(t)=x_{0}(1-t)^{3}+3 x_{1} t(1-t)^{2}+3 x_{2} t^{2}(1-t)+x_{3} t^{3} \\
& Y(t)=y_{0}(1-t)^{3}+3 y_{1} t(1-t)^{2}+3 y_{2} t^{2}(1-t)+y_{3} t^{3}
\end{aligned}
$$

Parametric Varieties

Whitney umbrella given by the parametrization

$$
X(s, t)=s t, \quad Y(s, t)=s \quad Z(s, t)=t^{2}
$$

We need to describe these geometric objects by implicit equations, i.e., as $V\left(f_{1}, \ldots, f_{r}\right)$. This allows to easily check if a given point lies on the variety.

Ideals

Given $S \subset k^{n}$ form

$$
I(S)=\left\{g \in k\left[x_{1}, \ldots, x_{n}\right] \mid g\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all }\left(a_{1}, \ldots, a_{n}\right) \in S\right\}
$$

If f and $g \in I(S)$ and h arbitrary then

$$
f+g \in I(S) \text { and } h f \in I(S)
$$

So $I(S)$ is an ideal: the ideal of polynomial functions vanishing on S.

Hilbert Basis Theorem

Ideals

Given f_{1}, \ldots, f_{r} in $k\left[x_{1}, \ldots, x_{n}\right]$,

$$
\left\langle f_{1}, \ldots, f_{r}\right\rangle=\left\{\sum_{i=i}^{n} h_{i} f_{i} \mid h_{1}, \ldots, h_{n} \in k\left[x_{1}, \ldots, x_{n}\right]\right\}
$$

is the ideal generated by f_{1}, \ldots, f_{r}.

Theorem

If $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is an ideal, there exists f_{1}, \ldots, f_{r} such that

$$
\left\langle f_{1}, \ldots, f_{r}\right\rangle=I
$$

$I(S)$ has a finite generating set.

Rational Parametrization

Let $p_{1}\left(t_{1}, \ldots, t_{d}\right), \ldots, p_{n}\left(t_{1}, \ldots, t_{d}\right) \in k\left[t_{1}, \ldots, t_{d}\right]$

$$
S=\left\{\left(p_{1}\left(a_{1}, \ldots, a_{d}\right), \ldots, p_{n}\left(a_{1}, \ldots, a_{d}\right)\right) \in k^{n} \mid\left(a_{1}, \ldots, a_{d}\right) \in k^{d}\right\}
$$

is called a rational parametrization (r.p.).

Theorem

If S is a r.p. and $I(S)=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ then S and $V\left(f_{1}, \ldots, f_{r}\right)$ differ by a set of dimension less than the dimension of S.

Example

Let $S=\left\{\left(t^{2}+1, t^{3}+t\right) \mid t \in \mathbb{R}\right\}$. Then $I(S)=\left\langle y^{2}-x^{3}-x^{2}\right\rangle$

Quadratic Bézier Curves

Example: Hardy-Weinberg Equilibrium
Consider a gene with two alleles: A and B. Let $X=\#$ of times A appears in a pair of matching chromosomes.

If A and B are in Hardy-Weinberg equilibrium, the alleles are selected independently on each chromosome, that is, there exists θ such that $P(X=0)=\theta^{2}$

$$
\begin{aligned}
& P(X=1)=2 \theta(1-\theta) \text { and } P(X=2)=(1-\theta)^{2} \\
& S=\left\{\left(\theta^{2}, 2 \theta(1-\theta),(1-\theta)^{2}\right) \mid \theta \in[0,1]\right\} \\
& I(S)=\left\langle p_{0}+p_{1}+p_{2}-1, p_{1}^{2}-4 p_{0} p_{2}\right\rangle \\
& \subset \mathbf{C}\left[p_{0}, p_{1}, p_{2}\right]
\end{aligned}
$$

Affine Varieties

Varieties

For an ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$,

$$
V(I)=\left\{x \in k^{n} \mid f(x)=0 \text { for all } f \in I\right\}
$$

$V\left(f_{1}, \ldots, f_{r}\right)=V\left(\left\langle f_{1}, \ldots, f_{r}\right\rangle\right)$

$$
\left\langle 2 x^{2}-3 y^{2}+10,3 x^{2}-y^{2}+1\right\rangle=\left\langle x^{2}-1, y^{2}-4\right\rangle
$$

Projection and Elimination

In linear algebra, Gauss Algorithm parametrizes the solution space of a linear system of equations by a coordinate space. This can be viewed as a projection of the solution space.

Projection is also applied to solve systems of polynomial equations

For any ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ we consider the elimination ideal

$$
I_{m}=I \cap k\left[x_{m+1}, \ldots, x_{n}\right]
$$

and the projection $\pi_{m}: k^{n} \longrightarrow k^{n-m}$ given by

$$
\pi_{m}\left(a_{1}, \ldots, a_{n}\right)=\left(a_{m+1}, \ldots, a_{n}\right)
$$

Example

Let $I=\left\langle x^{2}-1, y^{2}-4\right\rangle$, then $V(I)=\{(1,2),(-1,2),(1,-2),(-1,-2)\}$ then $\pi_{1}(V(I))=\{-2,2\}$ and $I_{1}=\left\langle y^{2}-4\right\rangle$.

Let $S=V(x y-1)$, then $\pi_{1}(S)=k \backslash\{0\}$.

Theorem

If k is algebraically closed, then $\overline{\pi_{m}(V(I))}=V\left(I_{m}\right)$

Gröbner bases

Theorem

If $G=\left\{g_{1}, \ldots, g_{r}\right\}$ is a Gröbner basis of $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ with respect to the lexicographic ordering, then

$$
G_{m}=G \cap k\left[x_{m+1}, \ldots, x_{n}\right]
$$

is a Gröbner basis of $I_{m} \subset k\left[x_{m+1}, \ldots, x_{n}\right]$ with respect to the lexicographic ordering.

Polynomial Implicitization

Let $S=\left\{\left(t^{2}, t^{3}, t^{4}\right) \mid t \in k\right\}$. Consider the ideal

$$
I=\left\langle x-t^{2}, y-t^{3}, z-t^{4}\right\rangle
$$

A Gröbner basis of I with respect to the lexicographic order with $t>z>y>x$ is given by $\left\{y^{2}-x^{3}, z-x^{2}, t x-y, t y-x^{2}, t^{2}-x\right\}$, hence

$$
\overline{\pi_{1}(V(I))}=V\left(I_{1}\right)=V\left(y^{2}-x^{3}, z-x^{2}\right)
$$

Rational Implicitization

Theorem

Suppose k is an infinite field and we are given a rational map $\phi: k^{m} \backslash Z \longrightarrow k^{n}$ given by

$$
\left(t_{1}, \ldots, t_{m}\right) \longmapsto\left(\frac{f_{1}(t)}{g_{1}(t)}, \ldots, \frac{f_{n}(t)}{g_{n}(t)}\right)
$$

with f_{i} and $g_{i} \in k\left[t_{1}, \ldots, t_{m}\right]$ and $Z=V(g), g=g_{1} \cdot g_{2} \cdots g_{n}$. Then

$$
\overline{\operatorname{Im}(\phi)}=V\left(I_{m+1}\right)
$$

with

$$
I=\left\langle g_{1} x_{1}-f_{1}, \ldots, g_{n} x_{n}-f_{n}, 1-g s\right\rangle \subset k\left[s, t_{1}, \ldots, t_{m}, x_{1}, \ldots, x_{n}\right]
$$

Example

Consider the parametrization of the circle given by $t \longmapsto\left(\frac{1-t^{2}}{t^{2}+1}, \frac{2 t}{t^{2}+1}\right)$
given by the $2^{\text {nd }}$ intersection point of $y=t(x+1)$ with the circle:

A Gröbner basis of
$I=\left\langle\left(t^{2}+1\right) x-\left(1-t^{2}\right),\left(t^{2}+1\right) y-2 t, 1-\left(t^{2}+1\right)^{2} s\right\rangle$ with respect to lex with $s>t>x>y$ is given by

$$
\left\{x^{2}+y^{2}-1, t y+x-1, t x+t-y, s-\frac{1}{2} x-\frac{1}{2}\right\}
$$

and hence $I_{2}=\left\langle x^{2}+y^{2}-1\right\rangle$.

